Skip to main content

Advertisement

Log in

Nucleic acid-specific photoactivation of oligodeoxyribonucleotides labeled with deuterated dihydro-N,N,N′,N′-tetramethylrhodamine using green light

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We developed a simple protocol for high-yielding synthesis of conjugates of a deuterated dihydro-N,N,N′,N′-tetramethylrhodamine (F*) with oligodeoxyribonucleotides and a 2′-OMe RNA (a representative nuclease-resistant, chemically modified oligonucleotide) using easily accessible starting materials including NaBD4 and conjugates of oligonucleotides with N,N,N′,N′-tetramethylrhodamine (F). These compounds were found to be stable in air and insensitive to light at 525, 635 and 650 nm, whereas slow activation occurs upon their exposure to 470 nm light. However, at the conditions of the templated reaction, in the presence of a target nucleic acid and a photocatalyst based on the eosin structure, the F* is oxidized forming fluorescent F. This reaction is >30-fold faster than the background reaction in the absence of the template. Moreover, the presence of a single mismatch in the target nucleic acid slows down the templated reaction by eightfold. These activatable dyes can potentially find applications as nucleic acid-specific probes for super-resolution imaging in live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DIC:

N,N′-diisopropylcarbodiimide

HPLC:

High-performance liquid chromatography

Fl:

Fluorescein

GSD:

Ground-state depletion

MALDI-TOF:

Matrix-assisted laser desorption ionization time of flight

MOPS:

3-(N-morpholino)propanesulfonic acid

NAC:

N-acetylcystein

ODN:

Oligodeoxyribonucleotide

PS:

Photosensitizer

SIM:

Structured illumination microscopy

SMF:

Single-molecule fluorescence

STED:

Stimulated emission depletion

THAP:

2′,4′,6′-Trihydroxyacetophenone

UV:

Ultraviolet

References

  • Abbe E (1873) Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–4420

    Article  Google Scholar 

  • Arian D, Cló E, Gothelf KV, Mokhir A (2010) A nucleic acid dependent chemical photocatalysis in live cells. Chem Eur J 16:288–295

    Article  CAS  PubMed  Google Scholar 

  • Arian D, Kovbasyuk L, Mokhir A (2011) 1,9-Di(alkoxy)anthracene as a singlet oxygen-sensitive linker. J Am Chem Soc 133:3972–3980

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess FH (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bilski P, Belanger AG, Chignell CF (2002) Photosensitized oxidation of 2′,7′-dichlorofluorescin: singlet oxygen does not contribute to the formation of fluorescent oxidation product 2′,7′-dichlorofluorescein. Free Radic Biol Med 33:938–946

    Article  CAS  PubMed  Google Scholar 

  • Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A (2012) Light-controlled tools. Angew Chem Int Ed 51:8446–8476

    Article  CAS  Google Scholar 

  • Dutta S, Mokhir A (2011) An autocatalytic chromogenic and fluorogenic photochemical reaction controlled by nucleic acids. Chem Commun 47:1243–1245

    Article  CAS  Google Scholar 

  • Dutta S, Flottmann B, Heilemann M, Mokhir A (2012) Hybridization and reaction-based, fluorogenic nucleic acid probes. Chem Commun 48:9664–9666

    Article  CAS  Google Scholar 

  • Dutta S, Fülöp A, Mokhir A (2013) A fluorogenic, catalytic, photochemical reaction for amplified detection of nucleic acids. Bioconjug Chem 24:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Fülöp A, Peng X, Greenberg MM, Mokhir A (2010) A nucleic acid directed, red light-induced chemical reaction. Chem Commun 46:5659–5661

    Article  Google Scholar 

  • Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  • Gwinn E, O’Neill P, Guerrero A, Bouwmeester D, Fygenson D (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283

    Article  CAS  Google Scholar 

  • Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176

    Article  CAS  Google Scholar 

  • Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497

    Article  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  • Helmig S, Rotaru A, Arian D, Kovbasyuk L, Arnbjerg J, Ogilby PR, Kjems J, Mokhir A, Besenbacher F, Gothelf KV (2010) Single molecule AFM studies of photosensitized singlet oxygen behavior on a DNA origami template. ACS Nano 4:7475–7480

    Article  CAS  PubMed  Google Scholar 

  • Kiel A, Kovacs J, Mokhir A, Krämer R, Herten D-P (2007) Direct monitoring of formation and dissociation of individual metal complexes by single-molecule fluorescence spectroscopy. Angew Chem Int Ed 46:3363–3366

    Article  CAS  Google Scholar 

  • Kundu K, Knight SF, Lee S, Taylor WR, Murphy N (2010) A significant improvement of efficacy of radical oxidant probes by the kinetic isotope effect. Angew Chem Int Ed 49:6134–6138

    Article  CAS  Google Scholar 

  • Langbein H, Paetzold R (1982) Photooxidation ofleuco dyes. III. Sensitized photooxidation of leucofluorescein. J Prakt Chem 324:46–52

    Article  CAS  Google Scholar 

  • Lord SJ, Conley NR, Lee HD, Samuel R, Liu N, Twieg RJ, Moerner WE (2008) A photoactivatable push–pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc 130:9204–9205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meunier J-R, Sarasin A, Marrot L (2002) Photogenotoxicity of mammalian cells: a review of the different assays for in vitro testing. Photochem Photobiol 75:437–447

    Article  CAS  PubMed  Google Scholar 

  • Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109:637–652

    Article  CAS  PubMed  Google Scholar 

  • Rayleigh L (1896) On the theory of optical images, with special reference to the microscope. Philos Mag 42:167–195

    Article  Google Scholar 

  • Rotaru A, Mokhir A (2007) Nucleic acid binders activated by light of selectable wavelength. Angew Chem Int Ed 46:6180–6183

    Article  CAS  Google Scholar 

  • Röthlingshöfer M, Gorska K, Winssinger N (2012) Nucleic acid templated uncaging of fluorophores using Ru-catalyzed photoreduction with visible light. Org Lett 14:482–485

    Article  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadhu KK, Winssinger N (2013) Detection of mRNA in live cells by using templated RuII-catalyzed unmasking of a fluorophore. Chem Eur J 19:8182–8189

    Article  CAS  PubMed  Google Scholar 

  • Sadhu KK, Eierhoff T, Romer W, Winssinger N (2012) Photoreductive uncaging of fluorophore in response to protein oligomers by templated reaction in vitro and in cellulo. J Am Chem Soc 134:20013–20016

    Article  CAS  PubMed  Google Scholar 

  • Schwering M, Kiel A, Kurz A, Lymperopoulos K, Sprödefeld A, Krämer R, Herten D-P (2011) Far-field nanoscopy with reversible chemical reactions. Angew Chem Int Ed 50:2940–2945

    Article  CAS  Google Scholar 

  • Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, Fölling J, Jakobs S, Schönle A, Hell SW, Eggeling CM (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99:2686–2694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van de Linde S, Heilemann M, Sauer M (2012) Live-cell super-resolution imaging with synthetic fluorophores. Annu Rev Phys Chem 63:519–540

    Article  PubMed  Google Scholar 

  • Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci 106:8107–8112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Mokhir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schikora, M., Dutta, S. & Mokhir, A. Nucleic acid-specific photoactivation of oligodeoxyribonucleotides labeled with deuterated dihydro-N,N,N′,N′-tetramethylrhodamine using green light. Histochem Cell Biol 142, 103–111 (2014). https://doi.org/10.1007/s00418-014-1187-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1187-0

Keywords

Navigation