Skip to main content
Log in

Phase inversion of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA)-incorporated nanoemulsion: effects of mcl-PHA molecular weight and amount on its mechanism

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The study investigated the effects of molecular weight and amount of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) on the formation of polymeric nanoparticle via phase inversion emulsification. Inversion from water-in-oil (W/O) to oil-in-water (O/W) emulsion through stepwise addition of water was affected by molecular weight and amount of incorporated mcl-PHA in the oil phase. The phase inversion mechanism depends upon molecular weight and amount of the incorporated mcl-PHA. It is hypothesized that at appropriate molecular weight and amount of mcl-PHA, the inversion occurs through the formation of bi-continuous/lamellar structure, in which the bulk composition of oil gradually decomposed into the desired nano-sized droplets. Otherwise, it will lead to an alternative phase inversion mechanism involving multiple emulsions resulting in larger nanoparticles with wider distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75:1–18

    Article  CAS  Google Scholar 

  2. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnology 5:1–18

    Article  Google Scholar 

  3. Fornaguera C, Dols-Perez A, Caldero G, Garcia-Celma MJ, Camarasa J, Solans C (2015a) PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release 211:134–143

    Article  CAS  Google Scholar 

  4. Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C (2015b) Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale 7:12076–12084

    Article  CAS  Google Scholar 

  5. Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C (2011) Neurotherapeutic applications of nanoparticles in Alzheimer's disease. J Control Release 152:208–231

    Article  CAS  Google Scholar 

  6. Neha B, Ganesh B, Preeti K (2013) Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci 2:107–132

    Google Scholar 

  7. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  Google Scholar 

  8. Todoroff J, Vanbever R (2011) Fate of nanomedicines in the lungs. Curr Opin Colloid Interface Sci 16:246–254

    Article  CAS  Google Scholar 

  9. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotech Biol Med 2:8–21

    Article  CAS  Google Scholar 

  10. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  Google Scholar 

  11. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  CAS  Google Scholar 

  12. Gaudin F, Sintes-Zydowicz N (2008) Core–shell biocompatible polyurethane nanocapsules obtained by interfacial step polymerisation in miniemulsion. Colloids Surf A Physicochem Eng Asp 331:133–142

    Article  CAS  Google Scholar 

  13. Gaudin F, Sintes-Zydowicz N (2011) Poly (urethane–urea) nanocapsules prepared by interfacial step polymerisation in miniemulsion: the droplet size: a key-factor for the molecular and thermal characteristics of the polymeric membrane of the nanocapsules? Colloids Surf A Physicochem Eng Asp 384:698–712

    Article  CAS  Google Scholar 

  14. Calderó G, García-Celma MJ, Solans C (2011) Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J Colloid Interface Sci 353:406–411

    Article  Google Scholar 

  15. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R-Rep 72:29–47

    Article  Google Scholar 

  16. MuÈller RH, MaÈder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  17. Brooks BW, Richmond HN (1994) Phase inversion in non-ionic surfactant oil-water systems-I. The effect of transitional inversion on emulsion drop sizes. Chem Eng Sci 49:1053–1064

    Article  CAS  Google Scholar 

  18. Maestro A, Solè I, González C, Solans C, Gutiérrez JM (2008) Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. J Colloid Interface Sci 327:433–439

    Article  CAS  Google Scholar 

  19. Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J Colloid Interface Sci 26:70–74

    Article  CAS  Google Scholar 

  20. Sherman P, Parkinson C (1978). Mechanism of temperature induced phase inversion in O/W emulsions stabilised by O/W and W/O emulsifier blends. In Emulsions (pp. 10–14). Steinkopff.

  21. Fernandez P, André V, Rieger J, Kühnle A (2004) Nano-emulsion formation by emulsion phase inversion. Colloids Surf A Physicochem Eng Asp 251:53–58

    Article  CAS  Google Scholar 

  22. Tyrode E, Mira I, Zambrano N, Márquez L, Rondón-Gonzalez M, Salager JL (2003) Emulsion catastrophic inversion from abnormal to normal morphology. 3. Conditions for triggering the dynamic inversion and application to industrial processes. Ind Eng Chem Res 42:4311–4318

    Article  CAS  Google Scholar 

  23. Tyrode E, Allouche J, Choplin L, Salager JL (2005) Emulsion catastrophic inversion from abnormal to normal morphology. 4. Following the emulsion viscosity during three inversion protocols and extending the critical dispersed-phase concept. Ind Eng Chem Res 44:67–74

    Article  CAS  Google Scholar 

  24. Rondón-Gonzaléz M, Sadtler V, Choplin L, Salager JL (2006) Emulsion catastrophic inversion from abnormal to normal morphology. 5. Effect of the water-to-oil ratio and surfactant concentration on the inversion produced by continuous stirring. Ind Eng Chem Res 45:3074–3080

    Article  Google Scholar 

  25. Sajjadi S, Jahanzad F, Yianneskis M (2004) Catastrophic phase inversion of abnormal emulsions in the vicinity of the locus of transitional inversion. Colloids Surf A Physicochem Eng Asp 240:149–155

    Article  CAS  Google Scholar 

  26. Zambrano N, Tyrode E, Mira I, Márquez L, Rodríguez MP, Salager JL (2003) Emulsion catastrophic inversion from abnormal to normal morphology. 1. Effect of the water-to-oil ratio rate of change on the dynamic inversion frontier. Ind Eng Chem Res 42:50–56

    Article  CAS  Google Scholar 

  27. Mira I, Zambrano N, Tyrode E, Márquez L, Peña AA, Pizzino A, Salager JL (2003) Emulsion catastrophic inversion from abnormal to normal morphology. 2. Effect of the stirring intensity on the dynamic inversion frontier. Ind Eng Chem Res 42:57–61

    Article  CAS  Google Scholar 

  28. Rondon-Gonzalez M, Madariaga LF, Sadtler V, Choplin L, Marquez L, Salager JL (2007) Emulsion catastrophic inversion from abnormal to normal morphology. 6. Effect of the phase viscosity on the inversion produced by continuous stirring. Ind Eng Chem Res 46:3595–3601

    Article  CAS  Google Scholar 

  29. Ishak KA, Annuar MSM, Heidelberg T, Gumel AM (2016) Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly(3-hydroxyalkanoates)(mcl-PHAs) in medium mixture of solvent/marginal non-solvent. Arab J Sci Eng 41:33–44

    Article  Google Scholar 

  30. Kunieda H, Shinoda K (1985) Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. I. Multisurfactant systems. J Colloid Interface Sci 107:107–121

    Article  CAS  Google Scholar 

  31. Myers D (1990) Surfaces, interfaces and colloids. New York etc, Wiley-Vch

    Google Scholar 

  32. Thakur RK, Villette C, Aubry JM, Delaplace G (2007) Formulation–composition map of a lecithin-based emulsion. Colloids Surf A Physicochem Eng Asp 310:55–61

    Article  CAS  Google Scholar 

  33. Paruta-Tuarez E, Sadtler V, Marchal P, Choplin L, Salager JL (2011) Making use of the formulation-composition map to prepare highly concentrated emulsions with particular rheological properties. Ind Eng Chem Res 50:2380–2387

    Article  CAS  Google Scholar 

  34. Kabalnov A, Wennerström H (1996) Macroemulsion stability: the oriented wedge theory revisited. Langmuir 12:276–292

    Article  CAS  Google Scholar 

  35. Salager JL, Marquez N, Graciaa A, Lachaise J (2000) Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems: influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 16:5534–5539

    Article  CAS  Google Scholar 

  36. Queste S, Salager JL, Strey R, Aubry JM (2007) The EACN scale for oil classification revisited thanks to fish diagrams. J Colloid Interface Sci 312(1):98–107

    Article  CAS  Google Scholar 

  37. Kumar A, Li S, Cheng CM, Lee D (2015) Recent developments in phase inversion emulsification. Ind Eng Chem Res 54:8375–8396

    Article  CAS  Google Scholar 

  38. Salager JL, Minana-Perez M, Perez-Sanchez M, Ramfrez-Gouveia M, Rojas CI (1983) Surfactant-oil-water systems near the affinity inversion part III: the two kinds of emulsion inversion. J Disper Sci Tech 4:313–329

    Article  CAS  Google Scholar 

  39. Salager JL, Loaiza-Maldonado I, Minana-Perez M, Silva F (1982) Surfactant-oil-water systems near the affinity inversion part I: relationship between equilibrium phase behavior and emulsion type and stability. J Disper Sci Tech 3:279–292

    Article  CAS  Google Scholar 

  40. Kunieda H, Shinoda K (1982) Phase behavior in systems of nonionic surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature). J Disper Sci Tech 3:233–244

    Article  CAS  Google Scholar 

  41. Marszall L (1987) HLB of nonionic surfactants: PIT and EIP methods HLB of nonionic surfactants: PIT and EIP methods. Nonionic Surfactants, Physical Chemistry; Surfactant Science Series 23:493–547

    CAS  Google Scholar 

  42. Morales D, Gutiérrez JM, Garcia-Celma MJ, Solans C (2003) A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 19:7196–7200

    Article  CAS  Google Scholar 

  43. Silva F, Pena A, Miñana-Pérez M, Salager JL (1998) Dynamic inversion hysteresis of emulsions containing anionic surfactants. Colloids Surf A132:221–227

    Article  Google Scholar 

  44. Peña A, Salager JL (2001) Effect of stirring energy upon the dynamic inversion hysteresis of emulsions. Colloids Surf A Physicochem Eng Asp 181:319–323

    Article  Google Scholar 

  45. Vieira RA, Sayer C, Lima EL, Pinto JC (2002) In-line and in situ monitoring of semi-batch emulsion copolymerizations using near-infrared spectroscopy. J Appl Polym Sci 84:2670–2682

    Article  CAS  Google Scholar 

  46. Silva WK, Chicoma DL, Giudici R (2011) In-situ real-time monitoring of particle size, polymer, and monomer contents in emulsion polymerization of methyl methacrylate by near infrared spectroscopy. Polym Eng Sci 51:2024–2034

    Article  CAS  Google Scholar 

  47. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Inter J Pharm 385:113–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged research grants from the Malaysian Ministry of Higher Education and University of Malaya for RP031C-15AET, RU015-2015 and UM. C/625/1/HIR/MOHE/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suffian M. Annuar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, K.A., Annuar, M.S.M. Phase inversion of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA)-incorporated nanoemulsion: effects of mcl-PHA molecular weight and amount on its mechanism. Colloid Polym Sci 294, 1969–1981 (2016). https://doi.org/10.1007/s00396-016-3957-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3957-9

Keywords

Navigation