Skip to main content
Log in

Granulocyte colony–stimulating factor–induced blood stem cell mobilisation in patients with chronic heart failure

Feasibility, safety and effects on exercise tolerance and cardiac function

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Bone marrow–derived stem cells may contribute to the regeneration of non–haematopoietic organs. In order to test whether an increase in circulating stem cell numbers improves impaired myocardial function we treated 16 male patients with chronic heart failure due to dilated (DCM; n = 7) or ischaemic cardiomyopathy (ICM; n = 9) with the stem cell mobilising cytokine granulocyte colony–stimulating factor (G–CSF; four 10–day treatment periods interrupted by treatment–free intervals of equal length). Safety and efficacy analyses were performed at regular intervals.

Peak CD34+ cell counts remained constant from cycle to cycle. Cardiac side effects in ICM patients included occasional episodes of dyspnea or angina and one episode of fatal ventricular fibrillation. Nine (4 DCM, 5 ICM) of 12 patients receiving four full G–CSF cycles experienced an improvement by one New York Heart Association (NYHA) class and a statistically significant increase in six–minute walking distance. By contrast, none of 8 ICM historical controls had a change in NYHA class during a similar time period. Statistically significant changes in echocardiographic parameters were not recorded.

Sequential administration of G–CSF is feasible and possibly effective in improving physical performance in patients with chronic heart failure. Patients with ICM may be at risk of increased angina and arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  2. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID–repopulating activity. Nat Med 4:1038–1045

    Article  PubMed  CAS  Google Scholar 

  3. Dührsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D (1988) Effects of recombinant human granulocyte colony–stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72:2074–2081

    PubMed  Google Scholar 

  4. Dührsen U, Sheridan WP (1994) G–CSF: Role in bone marrow and peripheral blood stem cell transplantation. In: Mertelsmann R, Herrmann F (eds) Hematopoietic growth factors in clinical applications. Marcel Dekker Inc, New York, pp 241–256

  5. Erbel R, Zotz R, Henkel B, Schreiner G, Steuernagel C (1987) Echocardiography for follow up studies after intervention. In: Roelandt J (ed) Digital techniques in echocardiography. Martinus Nijhoff Publishers, Dordrecht, pp 133–154

  6. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW et al. (1985) The 6–minute walk: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J 132:919–923

    PubMed  CAS  Google Scholar 

  7. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H et al (2005) G–CSF prevents cardiac remodeling after myocardial infarction by activating the Jak–Stat pathway in cardiomyocytes. Nat Med 11:305–311

    Article  PubMed  CAS  Google Scholar 

  8. Hill JM, Paul JD, Powell TM, McCoy JP, Dunbar CE, Horne M et al. (2003) Efficacy and risk of granulocyte colony stimulating factor administration in patients with severe coronary artery disease. Circulation 108 (suppl IV):478

    Article  Google Scholar 

  9. Hüttmann A, Li CL, Dührsen U (2003) Bone marrow–derived stem cells and "plasticity". Ann Hematol 82:599–604

    PubMed  Google Scholar 

  10. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz–Gonzalez XR et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  11. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK et al. (2004) Effects of intracoronary infusion of peripheral blood stem–cells mobilised with granulocyte– colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756

    Article  PubMed  CAS  Google Scholar 

  12. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H et al. (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587

    Article  PubMed  CAS  Google Scholar 

  13. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al. (2001) Multi–organ, multi–lineage engraftment by a single bone marrowderived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  14. Kuethe F, Figulla HR, Voth M, Richartz BM, Opfermann T, Sayer HG et al. (2004) Mobilization of stem cells by granulocyte colony–stimulating factor for the regeneration of myocardial tissue after myocardial infarction. Dtsch Med Wochenschr 129:424–428

    PubMed  CAS  Google Scholar 

  15. Laham RJ, Oettgen P (2003) Bone marrow transplantation for the heart: fact or fiction? Lancet 361:11–12

    Article  PubMed  Google Scholar 

  16. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    Article  PubMed  CAS  Google Scholar 

  17. Matsubara H (2004) Risk to the coronary arteries of intracoronary stem cell infusion and G–CSF cytokine therapy. Lancet 363:746–747

    Article  PubMed  Google Scholar 

  18. Morstyn G, Campbell L, Souza LM, Alton NK, Keech J, Green M et al (1988) Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1 (8587):667–672

    PubMed  CAS  Google Scholar 

  19. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al. (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  20. Norol F, Merlet P, Isnard R, Sebillon P, Bonnet N, Cailliot C et al. (2003) Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 102:4361–4368

    Article  PubMed  CAS  Google Scholar 

  21. Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J et al. (2004) Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  PubMed  CAS  Google Scholar 

  22. Ohtsuka M, Takano H, Zou Y, Toko H, Akazawa H, Qin Y et al. (2004) Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J 18:851–853

    PubMed  CAS  Google Scholar 

  23. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  24. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  25. Orlic D, Arai AE, Sheikh FH, Agyeman KO, McGehee J, Hoyt RF et al. (2002) Cytokine mobilized CD34+ cells do not benefit rhesus monkeys following induced myocardial infarction. Blood 100:28a–29a

    Google Scholar 

  26. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT et al. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    PubMed  Google Scholar 

  27. Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C et al. (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final oneyear results of the TOPCARE–AMI Trial. J Am Coll Cardiol 44:1690–1699

    PubMed  Google Scholar 

  28. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al. (2003) Autologous bone–marrow stemcell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  29. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  30. Terrovitis J, Charitos C, Dolou P, Papalois A, Eleftheriou A, Tsolakis E et al. (2004) No effect of stem cell mobilization with GM–CSF on infarct size and left ventricular function in experimental acute myocardial infarction. Basic Res Cardiol 99:241–246

    Article  PubMed  CAS  Google Scholar 

  31. Tögel F, Isaac J, Westenfelder C (2004) Hematopoietic stem cell mobilizationassociated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol 15:1261–1267

    PubMed  Google Scholar 

  32. Tomita S, Ishida M, Nakatani T, Fukuhara S, Hisashi Y, Ohtsu Y et al. (2004) Bone marrow is a source of regenerated cardiomyocytes in doxorubicininduced cardiomyopathy and granulocyte colony–stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. J Heart Lung Transplant 23:577–584

    PubMed  Google Scholar 

  33. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49

    Article  PubMed  Google Scholar 

  34. Wollert KC, Meyer GP, Lotz J, Ringes– Lichtenberg S, Lippolt P, Breidenbach C et al. (2004) Intracoronary autologous bone–marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Dührsen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüttmann, A., Dührsen, U., Stypmann, J. et al. Granulocyte colony–stimulating factor–induced blood stem cell mobilisation in patients with chronic heart failure. Basic Res Cardiol 101, 78–86 (2006). https://doi.org/10.1007/s00395-005-0556-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0556-1

Key words

Navigation