Skip to main content

Advertisement

Log in

An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observational evidence suggests that the sub-arctic North Pacific (SANP; 45°–60° N, 155° E–165° W) sea surface temperature (SST) shows pronounced multidecadal variability, which cannot be explained by the Pacific Decadal Oscillation (PDO). Here, we find that the SANP SST multidecadal variability is closely linked to the remote Atlantic Multidecadal Oscillation (AMO), indicating a multidecadal inter-basin teleconnection. The teleconnection can be well reproduced in a set of Atlantic Pacemaker experiments. An atmospheric bridge mechanism for the teleconnection is proposed by analyzing both observations and simulation data. The AMO warm phase generates anomalous ascent and upper-level divergence over the North Atlantic. The upper-level outflows converge towards the subarctic North Pacific, leading to compensating subsidence along with anomalous high pressure there. The enhanced adiabatic descent causes anomalous warming and moistening of the lower troposphere above the SANP basin and increases the downwelling longwave radiation. The warming of the SANP SST is further induced and amplified due to water vapor-longwave radiation-SST positive feedback. The anomalous high also weakens the climatological cyclonic flow of Aleutian low and suppresses the turbulent heat release from ocean to atmosphere, contributing to the SANP SST warming. Our findings suggest that the AMO plays a crucial role in the subarctic North Pacific SST multidecadal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116:C07005. https://doi.org/10.1029/2010JC006759

    Article  Google Scholar 

  • Chhak K, Di Lorenzo E (2007) Decadal variations in the California Current upwelling cells. Geophys Res Lett 314:L14604. https://doi.org/10.1029/2007GL030203

    Article  Google Scholar 

  • Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys Res Lett 36:L14801. https://doi.org/10.1029/2009GL038777

    Article  Google Scholar 

  • Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325(5939):460–464

    Google Scholar 

  • Danielson S, Curchitser E, Hedstrom K, Weingartner T, Stabeno P (2011) On ocean and sea ice modes of variability in the Bering Sea. J Geophys Res Oceans 116:24

    Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Google Scholar 

  • Deser C, Alexander MA, Timlin MS (1999) Evidence for a wind-driven intensification of the Kuroshio current extension from the 1970s to the 1980s. J Clim 12:1697–1706

    Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb KM, Chhak K, Franks PJS, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchister E, Powell TM, Rivere P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. https://doi.org/10.1029/2007GL032838

    Article  Google Scholar 

  • Ding QH, Schweiger A, L’Heureux M, Battisti DS, Po-Chedley S, Nathaniel CJ, Blanchard-Wrigglesworth E, Harnos K, Zhang Q, Eastman R, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–295. https://doi.org/10.1038/NCLIMATE3241

    Article  Google Scholar 

  • d’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett 34(23):L23705. https://doi.org/10.1029/2007GL031584

    Article  Google Scholar 

  • Enfield DB, Cid-Serrano L (2009) Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int J Climatol 30:174–184

    Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Google Scholar 

  • Folland CK, Rayner NA, Brown SJ, Smith TM, Shen SSP, Parker DE, Macadam I, Jones PD, Jones RN, Nicholls N, Sexton DMH (2001) Global temperature change and its uncertainties since 1861. Geophys Res Lett 28:2621–2624

    Google Scholar 

  • Frankcombe LM, England MH (2018) On the choice of ensemble mean for estimating the forced signal in the presence of internal variability. J Clim 31:5681–5693

    Google Scholar 

  • Frankcombe LM, England MH, Mann ME, Steinman BA (2015) Separating internal variability from the externally forced climate response. J Clim 28(20):8184–8202. https://doi.org/10.1175/JCLI-D-15-0069.1

    Article  Google Scholar 

  • Grunseich G, Wang B (2016) Arctic sea ice patterns driven by the Asian summer monsoon. J Clim 29:9097–9112

    Google Scholar 

  • Hartmann B, Wendler G (2005) The significance of the 1976 Pacific climate shift in the climatology of Alaska. J Clim 18:4824–4839

    Google Scholar 

  • Hetzinger S, Halfar J, Mecking JV, Keenlyside NS, Kronz A, Steneck RS, Adey WH, Lebednik PA (2011) Marine proxy evidence linking decadal North Pacific and Atlantic climate. Clim Dyn 39:1447–1455

    Google Scholar 

  • Hu AX, Meehl GA (2005) Bering Strait throughflow, and the thermohaline circulation. Geophys Res Lett 32:L24610. https://doi.org/10.1029/2005GL024424

    Article  Google Scholar 

  • Hunt GL, Stabeno P, Walters G, Sinclair E, Brodeur RD, Napp JM, Bond NA (2002) Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep Sea Res Part II Top Stud Oceanogr 49:5821–5853

    Google Scholar 

  • Hunt GL, Coyle KO, Eisner LB, Farley EV, Heintz RA, Mueter F, Napp JM, Overland JE, Ressler PH, Salo S, Stabeno PJ (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES J Mar Sci 68:1230–1243

    Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int J Climatol 25:865–879

    Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223

    Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans 103:18567–18589

    Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. https://doi.org/10.1029/2005GL024233

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407. https://doi.org/10.1038/nature12534

    Article  Google Scholar 

  • Kucharski F, Parvin A, Rodriguez-Fonseca B, Farneti R, Martin-Rey M, Polo I, Mohino E, Losada T, Mechoso CR (2016) The teleconnection of the tropical Atlantic to Indo-Pacific sea surface temperatures on inter-annual to centennial time scales: a review of recent findings. Atmosphere 7:29

    Google Scholar 

  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256

    Google Scholar 

  • Li S, Bates GT (2007) Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci 24:126–135

    Google Scholar 

  • Li C, Wu L, Wang Q, Qu L, Zhang L (2009) An intimate coupling of ocean–atmospheric interaction over the extratropical North Atlantic and Pacific. Clim Dyn 32:753–765

    Google Scholar 

  • Li J, Sun C, Jin FF (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40:5497–5502

    Google Scholar 

  • Li XC, Xie SP, Gille ST, Yoo C (2015) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279

    Google Scholar 

  • Liu Z, Alexander M (2007) Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev Geophys 45:RG2005. https://doi.org/10.1029/2005RG000172

    Article  Google Scholar 

  • Lopez H, Dong SF, Lee SK, Goni G (2016) Decadal modulations of interhemispheric global atmospheric circulations and monsoons by the South Atlantic meridional overturning circulation. J Clim 29:1831–1851

    Google Scholar 

  • Lu R, Dong B, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett 33(24):L24701. https://doi.org/10.1029/2006GL027655

    Article  Google Scholar 

  • Lyu K, Yu JY (2017) Climate impacts of the Atlantic Multidecadal Oscillation simulated in the CMIP5 models: a re-evaluation based on a revised index. Geophys Res Lett 44:3867–3876

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with Impacts on Salmon Production*. Bull Am Meteorol Soc 78:1069–1080

    Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci USA 101:4136–4141

    Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

    Google Scholar 

  • McGregor HV, Evans MN, Goosse H, Leduc G, Martrat B, Addison JA, Mortyn PG, Oppo DW, Seidenkrantz M-S, Sicre M-A, Phipps SJ, Selvaraj K, Thirumalai K, Filipsson HL, Ersek V (2015) Robust global ocean cooling trend for the pre-industrial Common Era. Nature Geosci 8:671–677. https://doi.org/10.1038/ngeo2510

    Article  Google Scholar 

  • Mueter FJ, Litzow MA (2008) Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl 18:309–320

    Google Scholar 

  • Okumura YM, Deser C, Hu A, Timmermann A, Xie S-P (2009) North Pacific climate response to freshwater forcing in the subarctic North Atlantic: oceanic and atmospheric pathways. J Clim 22:1424–1445

    Google Scholar 

  • O’Reilly CH, Woollings T, Zanna L (2017) The dynamical influence of the Atlantic multidecadal oscillation on continental climate. J Clim 30:7213–7230

    Google Scholar 

  • Peings Y, Magnusdottir G (2016) Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean–atmosphere coupling. Clim Dyn 47:1029–1047

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Richter I, Xie SP, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188

    Google Scholar 

  • Ruprich-Robert Y, Msadek R, Castruccio F, Yeager S, Delworth T, Danabasoglu G (2017) Assessing the climate impacts of the observed AMV using the GFDL CM2.1 and NCAR CESM1 global coupled models. J Clim 30:2785–2810

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nat Clim Change 367:723–726

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Google Scholar 

  • Stabeno PJ, Kachel NB, Moore SE, Napp JM, Sigler M, Yamaguchi A, Zerbini AN (2012) Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Res Part II Top Stud Oceanogr 65:31–45

    Google Scholar 

  • Stickler A, Brönnimann S, Valente MA, Bethke J, Sterin A, Jourdain S, Roucaute E, Vasquez MV, Reyes DA, Allan R, Dee D (2014) ERA-CLIM: historical surface and upper-air data for future reanalyses. Bull Am Meteorol Soc 95(9):1419–1430

    Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Google Scholar 

  • Sun C, Li J, Zhao S (2015) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep 5:16853

    Google Scholar 

  • Sun C, Li J, Ding R, Jin Z (2016) Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Clim Dyn 48:3903–3918

    Google Scholar 

  • Sun C, Kucharski F, Li J, Jin FF, Kang IS, Ding R (2017) Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Commun 8:15998

    Google Scholar 

  • Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792

    Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Google Scholar 

  • Timmermann A, Latif M, Voss R, Grotzner A (1998) Northern hemisphere interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931

    Google Scholar 

  • Timmermann A, Okumura Y, An S-I, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie S-P, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919

    Google Scholar 

  • Tokinaga H, Xie SP, Mukougawa H (2017) Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc Natl Acad Sci USA 114:6227–6232

    Google Scholar 

  • Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1(1):19–32. https://doi.org/10.1002/2013EF000165

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704

    Google Scholar 

  • Wu L, Li C, Yang C, Xie S-P (2008) Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21:3002–3019

    Google Scholar 

  • Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation. J Oceanogr 67:27–35

    Google Scholar 

  • Zhang L (2016) The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn 47(9–10):3157–3169. https://doi.org/10.1007/s00382-016-3018-6

    Article  Google Scholar 

  • Zhang R, Delworth TL (2007) Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. https://doi.org/10.1029/2007GL031601

    Article  Google Scholar 

  • Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res 118:5772–5791

    Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020

    Google Scholar 

  • Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW, Held IM, Kushnir Y, Marshall J, Ming Y, Msadek R, Robson J, Rosati AJ, Ting M, Vecchi GA (2013) Have aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70:1135–1144

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their constructive comments that significantly improved the quality of this paper. This work was jointly supported by the National Natural Science Foundation of China (41775038, 41975082, and 41790474), the National Program on Global Change and Air–Sea Interaction (GASI‐IPOVAI‐03 and GASI‐IPOVAI‐06) and the National Key Research and Development Plan (2016YFA0601801). C.S. is supported by the State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences (Project LTO1801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Sun, C., Li, J. et al. An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales. Clim Dyn 54, 807–822 (2020). https://doi.org/10.1007/s00382-019-05031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-05031-5

Keywords

Navigation