Skip to main content
Log in

SMMR-SSM/I derived Greenland Sea ice variability: links with Indian and Korean Monsoons

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Greenland Sea ice area (GRESIA) in boreal autumn and its association with the subsequent summer monsoon rainfall over India and South Korea is assessed for the period 1983–2013. It is found that GRESIA in the month of October has a significant positive relation (correlation coefficient (cc) = 0.45) with the subsequent Indian monsoon rainfall (IMR) while having a significant negative relation (cc = −0.40) with the ensuing Korean monsoon rainfall (KMR). GRESIA episodes in the preceding autumn impact the ensuing summer monsoon rainfall over India (South Korea) adversely (favourably). While central Pacific sea surface temperatures (SSTs) play a mediating role in transmitting the GRESIA signal towards the Indian subcontinent, snow over eastern Eurasia, just north of the Korea–Japan peninsula, plays a mediating role in transmitting the GRESIA signal towards the Korean peninsula. Although, the anomalies of equatorial central Pacific SSTs and eastern Eurasian snow play a crucial role in modulating IMR and KMR respectively, the GRESIA variability also plays a dominant role in modulating the monsoon variability over both the regions. Thus, a combination of autumn GRESIA along with SSTs over the central Pacific and snow over the eastern Eurasia, may possibly serve as a unique precursor to presage Asia’s two diverse regional subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abish B, Joseph PV, Johannessen OM (2013) Weakening trend of the Tropical Easterly Jet stream of boreal summer monsoon season 1950–2009. J Clim 26:9408–9414

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  • Amita P, Mahajan PN, Khaladkar RM (2012) Association of the Indian summer monsoon rainfall variability with the geophysical parameters over the Arctic region. Int J Climatol 32:2042–2050

    Article  Google Scholar 

  • Amita P, Kripalani RH, Preethi B, Pandithurai G (2016a) Potential role of the February–March southern annular mode on the indian summer monsoon rainfall: a new perspective. Clim Dyn 49:1161–1179, doi:10.1007/s00382-015-2894-5

    Google Scholar 

  • Amita P, Oh J, Kim I-w, Kripalani RH, Mitra AK, Pandithurai G (2016b) Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation. Clim Dyn. doi:10.1007/s00382-016-3445-4

    Google Scholar 

  • Amita P, Kripalani RH, Oh J, Preethi B (2017) Can the southern annular mode influence the Korean summer monsoon rainfall? Asia-Pac J Atm Sci (in Press)

  • Anil Kumar R (2007) New statistical models for long range forecasting of southwest monsoon rainfall over India. Clim Dyn 28(7–8):813–828

    Google Scholar 

  • Armstrong RL, Brodzik MJ, Knowles K, Savoie M (2007) Global Monthly EASE-Grid Snow Water Equivalent Climatology. National Snow and Ice Data Center. Digital media, Boulder

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res. doi:10.1029/2006JC003798

    Google Scholar 

  • Blanchard-Wrigglesworth E, Armour KC, Bitz CM (2011) Persistence and inherent predictability of Arctic Sea ice in a GCM ensemble and observations. J Clim 24:231–250

    Article  Google Scholar 

  • Budikova D (2009) Role of Arctic sea ice in global atmospheric circulation: a review. Glob Planet Chang 68(3):149–163

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL, Gloersen P, Comiso JC, Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res 104(C7):15803–15814

    Article  Google Scholar 

  • Ciasto L, Simpkins GR, England MH (2015) Teleconnections between Tropical Pacific SST anomalies and extratropical southern hemisphere climate. J Clim 28:56–65. doi:10.1175/JCLI-D-14-00438.1

    Article  Google Scholar 

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci. doi:10.1038/NGEO2234

    Google Scholar 

  • Day JA, Fung I, Risi C (2015) Coupling of South and East Asian monsoon precipitation in July–August. J Clim 28:4330–4356

    Article  Google Scholar 

  • Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of north Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17:877–889

    Article  Google Scholar 

  • Ding YH, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteor Atmos Phys 89:117–142

    Article  Google Scholar 

  • Duan A, Wu G (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793–807. doi:10.1007/s00382-004-0488-8

    Article  Google Scholar 

  • Flohn H (1958) Large-scale aspects of summer monsoon in South and East Asia. J Meteor Soc Japan 36:180–186

    Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett. doi:10.1029/2012GL051000

    Google Scholar 

  • Francis JA, Vavrus SJ (2015) Evidence for a wavier jet stream in response to rapid Arctic warming. Environ Res Lett. doi:10.1088/1748-9326/10/1/014005

    Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467. doi:10.1146/annurev.earth.31.100901.141251

    Article  Google Scholar 

  • Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. Econ Politic Wk 41:4887–4895

    Google Scholar 

  • Gloersen P, Campbell WJ (1991) Recent variations in Arctic and Antarctic sea-ice covers. Nature 352:33–36

    Article  Google Scholar 

  • Glowienka-Hense R, Hense A (1992) The effect of an arctic polynya on the Northern Hemisphere mean circulation and eddy regime: a numerical experiment. Clim Dyn 7:155–163

    Article  Google Scholar 

  • Gong D-Y, Ho C-H (2003) Arctic Oscillation signals in East Asian summer monsoon. J Geophys Res 108(D2):4066. doi:10.1029/2002JD002193

    Article  Google Scholar 

  • Gong D-Y, Yang G, Kim S-J, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn. doi:10.1007/s00382-011-1041-1

    Google Scholar 

  • Guo D, Gao Y, Bethke I, Gong D, Johannssen OM, Wang H (2014) Mechaism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor Appl Meteorol 115:107–119.

    Google Scholar 

  • Ha K-J, Park S-K, Kim K-Y (2005) On interannual characteristics of climate prediction center merged analysis precipitation over the Korean peninsula during the summer monsoon season. Int J Climatol 25:99–116

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic Sea ice export. Geophys Res Lett 27(7):989–992. doi:10.1029/1999GL010944

    Article  Google Scholar 

  • Ho C-H, Lee J-Y, Ahn M-H, Lee H-S (2003) A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int J Climatol 23:117–128

    Article  Google Scholar 

  • Honda M, Yamazaki K, Nakamura H, Takeuchi H (1999) Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J Climate 12:3347–3358

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  • Hu Z-Z, Wu R, Kinter JL III, Yang S (2005) Connection of summer rainfall variations in South and East Asia: role of El Niño-southern oscillation. Int J Climatol 25:1279–1289

    Article  Google Scholar 

  • Jeong J-H, Ho C-H (2005) Changes in occurrence of cold surges over East Asia in association with Arctic oscillation. Geophys Res Lett. doi:10.1029/2005GL023024

    Google Scholar 

  • Johannessen OM (2008) Decreasing Arctic sea ice mirrors increasing CO2 on decadal time scale. Atmos Oceanic Sci Lett 1(1):51–56

    Google Scholar 

  • Johannessen, O. M, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus A 56:328–341

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetama A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kang I-S (1998) Relationship between El-Niño and Korean climate variability. Asia Pacific J Atmos Sci 34(3):390–396

    Google Scholar 

  • Kendall MG, Stuart A (1979) The advanced theory of statistics, volume 2: inference and relationship, griffin, 4th edn, Hodder Arnold publisher, London, pp. 758 (ISBN: 0852642555)

    Google Scholar 

  • Kim B-J, Moon S-E, Riyu L, Kripalani RH (2002a) Tele-connections: summer monsoon over Korea and India. Adv Atmos Sci 19:665–676

    Article  Google Scholar 

  • Kim B-J, Kripalani RH, Oh J-H, Moon S-E (2002b) Summer monsoon rainfall patterns over South Korea and associated circulation features. Theor Appl Climatol 72:65–74

    Article  Google Scholar 

  • Koenig SJ, DeConto RM, Pollard D (2014) Impact of reduced Arctic sea ice on Greenland ice sheet variability in a warmer than present climate. Geophys Res Lett 41:3934–3943. doi:10.1002/2014GL059770

    Google Scholar 

  • Kripalani RH, Kulkarni A (1997) Rainfall variability over south-east Asia—connections with Indian monsoon and ENSO extremes: new perspectives. Int J Climatol 17:1155–1168

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A (1999) Climatology and variability of historical Soviet snow depth data: some new perspectives in snow-Indian monsoon tele-connections. Clim Dyn 15:475–489

    Article  Google Scholar 

  • Kripalani RH, Kulkarni A (2001) Monsoon rainfall variations and tele-connections over South and East Asia. Int J Climatol 21:603–616

    Article  Google Scholar 

  • Kripalani RH, Singh SV (1993) Large scale aspects of India-China summer monsoon rainfall. Adv Atmos Sci 10:71–84

    Article  Google Scholar 

  • Kripalani RH, Inamdar S, Sontakke NA (1996) Rainfall variability over Bangladesh and Nepal: Comparison and connections with features over India. Int J Climatol 16:689–703

    Article  Google Scholar 

  • Kripalani RH, Kim B-J, Oh J-H, Moon S-E (2002) Relationship between Soviet snow and Korean rainfall. Int J Climatol 22:1313–1325

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Chaudhari HS (2010) Delayed influence of the Indian ocean dipole mode on the East Asia—West Pacific monsoon: possible mechanism. Int J Climatol 30:197–209. doi:10.1002/joc.1890

    Google Scholar 

  • Krishna Kumar K, Soman MK, Rupa Kumar K (1995) Seasonal forecasting of Indian summer monsoon rainfall: a review. Weather 50:449–467

    Article  Google Scholar 

  • Krishnamurti TN (1973) Tibetan high and upper tropospheric tropical circulation during northern summer. B Am Meteorol Soc 54:1234–1249

    Google Scholar 

  • Krishnan R, Sugi M (2001) Baiu rainfall variability and associated monsoons teleconnections. J Meteorol Soc Jpn 79:851–860

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F-F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Li J, Swinbank R, Ding RQ, Duan WS (2013) Dynamics and predictability of high-impact weather and climate events. B Am Meteorol Soc 94:ES179–ES182

    Article  Google Scholar 

  • Li F, Wang HJ, Gao YQ (2014) On the strengthened relationship between East Asian winter monsoon and Arctic Oscillation: a comparison of 1950–1970 and 1983–2012. J Clim 27:5075–5091. doi:10.1175/JCLI-D-13-00335.1

    Article  Google Scholar 

  • Marathe S, Ashok K, Swapna P, Sabin TP (2015) Revisiting El Niño Modokis. Clim Dyn. doi:10.1007/s00382-015-2555-8

    Google Scholar 

  • Maykut GA (1978) Energy Exchange over young sea-ice in the central Arctic. J Geophys Res 83:3646–3658

    Article  Google Scholar 

  • Min S-K, Son S-W, Seo K-H, Kug J-S, An S-I, Choi Y-S, Jeong J-H, Kim B-M, Kim J-W, Kim Y-H, Lee J-Y, Lee M-I (2015) Changes in weather and climate extremes over Korea and possible causes: a review. Asia-Pac. J Atmos Sci 51(2):103–121

    Google Scholar 

  • Monahan AH, Fyfe JC, Pandolfo L (2003) The vertical structure of wintertime climate regimes of the northern hemisphere extratropical atmosphere. J Clim 16:2005–2021

    Article  Google Scholar 

  • Mooley DA, Parthasarathy B (1984) Fluctuations of all-India summer monsoon rainfall during 1871–1978. Clim Change 6:287–301

    Article  Google Scholar 

  • Nan S, Li J, Yuan X, Zhao P (2009) Boreal spring southern hemisphere annular mode, Indian ocean sea surface temperature, and East Asian summer monsoon. J Geophys Res 114:D02103

    Google Scholar 

  • Oh J-H, Kwon W-T, Ryoo S-B (1997) Review of the researches on Changma and future observational study (KORMEX). Adv Atmos Sci 14:207–222

    Article  Google Scholar 

  • Palmer TN, Anderson DLT (2006) The prospects for seasonal forecasting—a review paper. Quart J Roy Meteorol Soc. doi:10.1002/qj.49712051802

    Google Scholar 

  • Panda SK, Dash SK, Bhaskaran B, Pattnayak KC (2016) Investigation of the snow-monsoon relationship in a warming atmosphere using Hadley Center climate model. Glob Planet Chang 147:125–136

    Article  Google Scholar 

  • Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104(C9):20837–20856

    Article  Google Scholar 

  • Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res (Atmos). doi:10.1029/2009JD013568

    Google Scholar 

  • Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ (2013) Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc Natl Acad Sci USA 110:5336–5341. doi:10.1073/pnas.1222000110

    Article  Google Scholar 

  • Preethi B, Mujumdar M, Kripalani RH, Amita P, Krishnan R (2016) Recent trends and tele–connections among South and East Asian summer monsoons in a warming environment. Clim Dyn (online). doi:10.1007/s00382-016-3218-0

    Google Scholar 

  • Rajeevan M, Pai DS, Anil Kumar R (2007) New statistical models for long range forecasting of southwest monsoon rainfall over India. Clim Dyn 28:813–828

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Vihma T (2014) Effects of Arctic Sea ice decline on weather and climate: a review. Surv Geophys 35:1175–1214. doi:10.1007/s10712-014-9284-0

    Article  Google Scholar 

  • Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, von Storch H (1998) On the structure and evolution of ENSO related climate variability in the tropical Pacific: lessons from TOGA. J Geophys Res 103:14241–14260

    Article  Google Scholar 

  • Walsh JE (1983) Role of sea ice in climate variability: Theories and evidence. Atmos Ocean 21:229–242

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu R, Lau K (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific–east Asian monsoon. J Clim 14:4073–4090

    Article  Google Scholar 

  • Wang B, Xiang B, Lee J-Y (2013) Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. PNAS. doi:10.1073/pnas.1212646110

    Google Scholar 

  • Wang B, Xiang B, Li J, Webster PJ, Rajeevan MN, Liu J, Ha K-J (2015) Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat Comm 6:7154. doi:10.1038/ncomm8154

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: Processes, predictability and the prospects for prediction. J Geophys Res 103(c7, TOGA special issue):14451–14510

    Article  Google Scholar 

  • Wei W, Zhang RS, Wen M, Kim B-J, Nam J-C (2015) Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J Clim 28:2623–2634. doi:10.1175/JCLI-D-14-00454.1

    Article  Google Scholar 

  • Wu RG (2017) Relationship between Indian and East Asian summer rainfall variations. Adv Atmos Sci 34(1):4–15. doi:10.1007/s00376-016-6216-6

    Article  Google Scholar 

  • Wu G-X, Zhang Y-S (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Wea Rev 126:913–927

    Article  Google Scholar 

  • Wu B, Wang J, Walsh J (2004) Possible feedback of winter sea ice in the Greenland and the Barents Sea on the local atmosphere. Mon Wea Rev 132:1876–1968

    Google Scholar 

  • Wu Z, Li J, Wang B, Liu X (2009a) Can the Southern Hemisphere annular mode affect China winter monsoon? J Geophys Res 114:D11107

    Article  Google Scholar 

  • Wu B, Zhang R, Wang B, D’Arrigo R (2009b) On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys Res Lett. doi:10.1029/2009GL037299

    Google Scholar 

  • Wu R, Liu G, Ping Z (2014) Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes. J Geophys Res (Atmos) 119:7410–7424. doi:10.1002/2014JD02/764

    Article  Google Scholar 

  • Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (Ed) The Asian Monsoon. Springer, New York 513–549

    Chapter  Google Scholar 

  • Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett. doi:10.1029/2006GL028571

    Google Scholar 

  • Yasunari T, Saito K, Takata K (2006) Relative role of large scale orography and land surface processes in the global hydroclimate. Part I: impacts on monsoon systems and the tropics. J Hydrometeor 7:626–641

    Article  Google Scholar 

  • Yim S-Y, Jhun J-G, Lu R, Wang B (2010) Two distinct patterns of spring snow cover anomaly and their impacts on the East Asian summer monsoon. J Geophys Res 115:D22113. doi:10.1029/2010/JD013996

    Article  Google Scholar 

  • Yun K-S, Lee J-Y, Ha K-J (2014) Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient. J Geophys Res Atmos 119:8104–8116

    Article  Google Scholar 

  • Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the ‘86/87 and ‘91/92 events. J Meteor Soc Japan, 02/1996 74(1):49–62

    Article  Google Scholar 

  • Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16(2):229–241

    Article  Google Scholar 

  • Zhao P, Zhang X, Zhou X, Ikeda M, Yin Y (2004) The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J Clim 17:3434–3344

    Article  Google Scholar 

  • Zhao P, Zhu Y, Zhang RH (2007) An Asia–Pacific teleconnection in summer tropospheric temperature and associated Asia climate variability. Clim Dyn 29(2–3):293–303

    Article  Google Scholar 

  • Zheng, F, Li J, Clark RT, Ding RQ, Li F, Wang L (2014) Influence of the boreal spring Southern annular mode on summer surface air temperature over northeast China. Atmos Sci Lett 16:155–161

    Article  Google Scholar 

  • Zheng F, Li J, Wang L, Xie F, Li XF (2015) Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J Clim 28:6859–6881

    Article  Google Scholar 

  • Zhou B, Wang H (2008) Relationship between Hadley circulation and sea ice extent in the Bering Sea. Chinese Sci Bull 53(3):444–449

    Article  Google Scholar 

  • Zhu Q, He J, Wang P (1986) A study of circulation difference between East Asia and the Indian summer monsoon with their interaction. Adv Atmos Sci 3:466–477

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to acknowledge the support of Pukyong National University, Busan, South Korea for providing the necessary facilities. Amita Prabhu was supported by the Korea Meteorological Administration Research and Development Program under the Grant KMIPA2015-6130 for her period of stay in Korea from January–December 2016. IITM is fully supported by Ministry of Earth Sciences (MoES), Govt. of India. The first author also wishes to thank Director IITM and MoES for permitting her to avail the assignment in South Korea. Authors are also grateful to NCEP-NCAR, NOAA, NSIDC and CRU for freely providing their data products and the Grid Analysis and Display System (GrADS) software for the plots. Last but not the least; the authors are immensely grateful to anonymous reviewers for their constructive suggestions towards improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaiho Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, A., Oh, J., Kim, Iw. et al. SMMR-SSM/I derived Greenland Sea ice variability: links with Indian and Korean Monsoons. Clim Dyn 50, 1023–1043 (2018). https://doi.org/10.1007/s00382-017-3659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3659-0

Keywords

Navigation