Skip to main content

Advertisement

Log in

Transient hysteresis of near-surface permafrost response to external forcing

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Estimates of changes in near-surface permafrost (NSP) area S p relative to change in globally averaged surface air temperature T g are made by using the global climate model developed at the A.M. Obukhov Institute of Atmospheric Physics RAS (IAP RAS CM). For ensemble of runs forced by scenarios constructed as return-to-preindustrial continuations of the RCP (Representative Concentration Pathways) scenarios family, a possibility of transient hysteresis in dependence of S p versus T g is exhibited: in some temperature range which depends on imposed scenario of external forcing, NSP area is larger, at the same global mean surface air temperature, in a warming climate than in a cooling climate. This hysteresis is visible more clearly for scenarios with higher concentration of greenhouse gases in the atmosphere in comparison to those in which this concentration is lower. Hysteresis details are not sensitive to the type of the prescribed continuation path which is used to return the climate to the preindustrial state. The multiple-valued dependence of S p on T g arises due to dependence of soil state in the regions of extra-tropical wetlands and near the contemporary NSP boundaries on sign of external climatic forcing. To study the dependence of permafrost hysteresis on amplitude and temporal scale of external forcing, additional model runs are performed. These runs are forced by idealised scenarios of atmospheric CO2 content varying, depending on run, with periods from 100 to 1,000 year and with different amplitudes. It is shown that the above-mentioned hysteresis is related to the impact of phase transitions of soil water on apparent inertia of the system as well as to the impact of soil state on atmospheric hydrological cycle and radiation transfer in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anisimov O, Belolutskaya M (2004) Impact of anthropogenic warming on permafrost conditions in models: vegetation effect. Russ Meteorol Hydrol 29(11):52–58

    Google Scholar 

  • Arzhanov M, Demchenko P, Eliseev A, Mokhov I (2008) Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya Atmos Ocean Phys 44(5):279–287. doi:10.1134/S0001433808050022

    Google Scholar 

  • Arzhanov M, Eliseev A, Demchenko P, Mokhov I, Khon V (2008) Simulation of thermal and hydrological regimes of siberian river watersheds under permafrost conditions from reanalysis data. Izvestiya Atmos Ocean Phys 44(1):83–89. doi:10.1134/S000143380801009X

    Google Scholar 

  • Boer G, Yu B (2003) Climate sensitivity and climate state. Clim Dyn 21:167–176

    Article  Google Scholar 

  • Boucher O, Halloran P, Burke E, Doutriaux-Boucher M, Jones C, Lowe J, Ringer M, Robertson E, Wu P (2012) Reversibility in an Earth System model in response to CO2 concentration changes. Environ Res Lett 7(2):024013. doi:10.1088/1748-9326/7/2/024013

    Article  Google Scholar 

  • Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer, Berlin

    Book  Google Scholar 

  • Brovkin V, Claussen M, Petoukhov V, Ganopolski A (1998) On the stability of the atmosphere-vegetation system in the Sahara/Sahel region. J Geophys Res 103(D24):31613–31624

    Article  Google Scholar 

  • Budyko M (1986) The evolution of the biosphere. D. Reidel Pub. Co., Dordrecht

    Book  Google Scholar 

  • Claussen M, Mysak L, Weaver A, Crucifix M, Fichefet T, Loutre MF, Weber S, Alcamo J, Alexeev V, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov I, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18(7):579–586

    Article  Google Scholar 

  • Cox P, Betts R, Bunton C, Essery R, Rowntree P, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15(3):183–203. doi:10.1007/s003820050276

    Article  Google Scholar 

  • Crowley T (1990) Are there any satisfactory geologic analogs for a future greenhouse warming. J Clim 3(11):1282–1292. doi:10.1175/1520-0442(1990)003<1282:ATASGA>2.0.CO;2

    Article  Google Scholar 

  • Demchenko P, Velichko A, Eliseev A, Mokhov I, Nechaev V (2002) Dependence of permafrost conditions on global warming: comparison of models, scenarios, and paleoclimatic reconstructions. Izvestia Atmos Ocean Phys 38(2):143–151

    Google Scholar 

  • Dickinson R, Henderson-Sellers A, Kennedy P, Wilson M (1986) Biosphere–atmosphere transfer scheme (BATS). Technical Report NCAR TN–275-STR, Naval Weather Service, Boulder, Colo

  • Dümenil L, Todini E (1992) A rainfall–runoff scheme for use in the Hamburg climate model. In: Kane J (eds) Advances in theoretical hydrology—a tribute to James Dooge.. Elsevier Science Publication, Amsterdam, pp 129–157

    Chapter  Google Scholar 

  • Eby M, Weaver A, Alexander K, Zickfeld K, Abe-Ouchi A, Cimatoribus A, Crespin E, Drijfhout S, Edwards N, Eliseev A, Feulner G, Fichefet T, Forest C, Goosse H, Holden P, Joos F, Kawamiya M, Kicklighter D, Kienert H, Matsumoto K, Mokhov I, Monier E, Olsen S, Pedersen J, Perrette M, Philippon-Berthier G, Ridgwell A, Schlosser A, Schneider von Deimling T, Shaffer G, Smith R, Spahni R, Sokolov A, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zeng N, Zhao F (2012) Historical and idealized climate model experiments: an EMIC intercomparison. Clim Past [submitted]

  • Eliseev AV (2011) Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values. Izvestiya Atmos Ocean Phys 47(2):131–153. doi:10.1134/S0001433811020046

  • Eliseev A, Mokhov I (2011) Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios. Adv Atmos Sci 28(5):1215–1232. doi:10.1007/s00376-010-0054-8

    Article  Google Scholar 

  • Eliseev A, Arzhanov M, Demchenko P, Mokhov I (2009) Changes in climatic characteristics of Northern Hemisphere extratropical land in the 21st century: assessments with the IAP RAS climate model. Izvestiya Atmos Ocean Phys 45(3):271–283. doi:10.1134/S0001433809030013

    Article  Google Scholar 

  • Eliseev A, Demchenko P, Arzhanov M, Mokhov I (2012) Hysteresis of the surface permafrost area dependence on the global temperature. Doklady Earth Sci 444(2):725–728. doi:10.1134/S1028334X12060025

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Doney S, Eby M, Fung I, Govindasamy B, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lind say K, Matthews H, Raddatz T, Rayner P, Reick C, Roeck ner E, Schnitzler KG, Schnur R, Strassmann K, Weaver A, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(22):3337–3353

    Article  Google Scholar 

  • Hu A, Meehl G, Han W, Timmermann A, Otto-Bliesner B, Liu Z, Washington W, Large W, Abe-Ouchi A, Kimoto M, Lambeck K, Wu B (2012) Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc Natl Acad Sci 109(17):6417–6422. doi:10.1073/pnas.1116014109

    Article  Google Scholar 

  • Huntingford C, Cox P (2000) An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim Dyn 16(8):575–586

    Article  Google Scholar 

  • Huybrechts P (1994) Formation and disintegration of the Antarctic ice sheet. Ann Glaciol 20(1):336–340. doi:10.3189/172756494794587221

    Article  Google Scholar 

  • Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes P (2005) Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Clim Dyn 25(2):189–204. doi:10.1007/s00382-005-0027-2

    Article  Google Scholar 

  • Koven C, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci 108(36):14769–14774. doi:10.1073/pnas.1103910108

    Article  Google Scholar 

  • Krasnosel’skii M, Pokrovskii A (1989) Systems with hysteresis. Springer, New York

    Book  Google Scholar 

  • Lawrence D, Slater A (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32(24):L24401. doi:10.1029/2005GL025080

    Article  Google Scholar 

  • Lawrence D, Slater A (2008) Incorporating organic soil into a global climate model. Clim Dyn 30(2):145–160. doi:10.1007/s00382-007-0278-1

    Article  Google Scholar 

  • MacDougall A, Avis C, Weaver A (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nat Geosci 5(10):719–721. doi:10.1038/ngeo1573

    Article  Google Scholar 

  • Matthews H, Weaver A, Meissner K (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Clim 18(10):1609–1628

    Article  Google Scholar 

  • Mitchell J (1990) Greenhouse warming: is the mid-Holocene a good analogue. J Clim 3(11):1177–1192. doi:10.1175/1520-0442(1990)003<1177:GWITMH>2.0.CO;2

    Article  Google Scholar 

  • Mokhov I, Eliseev A (2012) Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing. Doklady Earth Sci 443(2):532–536. doi:10.1134/S1028334X12040228

    Article  Google Scholar 

  • Mokhov I, Demchenko P, Eliseev A, Khon V, Khvorostyanov D (2002) Estimation of global and regional climate changes during the 19th–21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcing. Izvestiya Atmos Ocean Phys 38(5):555–568

    Google Scholar 

  • Mokhov I, Eliseev A, Demchenko P, Khon V, Akperov M, Arzhanov M, Karpenko A, Tikhonov V, Chernokulsky A, Sigaeva E (2005) Climate changes and their assessment based on the IAP RAS global model simulations. Doklady Earth Sci 402(4):591–595

    Google Scholar 

  • Moss R, Edmonds J, Hibbard K, Manning M, Rose S, van Vuuren D, Carter T, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Stouffer R, Thomson A, Weyant J, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Nelson F (2003) (Un)frozen in time. Science 299:1673–1675

    Article  Google Scholar 

  • Nelson F, Outcalt S (1987) A computaional method for prediction and regionalization of permafrost. Arct Alp Res 19(3):279–288

    Article  Google Scholar 

  • Nicolsky D, Romanovsky V, Alexeev V, Lawrence D (2007) Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett 34(8):L08501. doi:10.1029/2007GL029525

    Article  Google Scholar 

  • Pavlova T, Kattsov V, Nadyozhina Y, Sporyshev P, Govorkova V (2007) Terrestrial cryosphere evolution through the XX and XXI centuries as simulated with the new generation of global climate models. Earth Cryosph XI(2):3–13 (in Russian)

    Google Scholar 

  • Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev A, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov I, Montoya M, Mysak L, Sokolov A, Stone P, Wang Z, Weaver A (2005) EMIC intercomparison project (EMIP–CO2): comparative analysis of EMIC simulations of current climate and equilibrium and transient reponses to atmospheric CO2 doubling. Clim Dyn 25(4):363–385. doi:10.1007/s00382-005-0042-3

    Article  Google Scholar 

  • Pollard D, DeConto R (2005) Hysteresis in Cenozoic Antarctic ice–sheet variations. Glob Planet Change 45(1–3):9–21. doi:10.1016/j.gloplacha.2004.09.011

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak L, Wang Z, Weaver A (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32(23):L23605. doi:10.1029/2005GL023655

    Article  Google Scholar 

  • Robinson A, Calov R, Ganopolski A (2012) Multistability and critical thresholds of the Greenland ice sheet. Nat Clim Change 2(6):429–432. doi:10.1038/nclimate1449

    Article  Google Scholar 

  • Saito K, Kimoto M, Zhang T, Takata K, Emori S (2007) Evaluating a high–resolution climate model: simulated hydrothermal regimes in frozen ground regions and their change under the global warming scenario. J Geophys Res 112(F2):F02S11. doi:10.1029/2006JF000577

    Google Scholar 

  • Schaefer K, Zhang T, Bruhwiler L, Barrett A (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus 63(2):165–180. doi:10.1111/j.1600-0889.2011.00527.x

    Article  Google Scholar 

  • Schneidervon Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence D, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9(2):649–665. doi:10.5194/bg-9-649-2012

    Article  Google Scholar 

  • Schuur E, Bockheim J, Canadell J, Euskirchen E, Field C, Gory achkin S, Hagemann S, Kuhry P, Lafleur P, Lee H, Mazhitova G, Nelson F, Rinke A, Romanovsky V, Shiklomanov N, Tarnocai C, Venevsky S, Vogel J, Zimov S (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714. doi:10.1641/B580807

    Article  Google Scholar 

  • Solomon, S, Qin, D, Manning, M, Marquis, M, Averyt, K, Tignor, M, LeRoy Miller, H, Chen, Z (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Stillwell-Soller L, Klinger L, Pollard D, Thompson S (1995) The global distribution of freshwater wetlands. Technical Report NCAR TN–416+STR, National Center for Atmospheric Research, Boulder, Colo

  • Subin Z, Koven C, Riley W, Torn M, Lawrence D, Swenson S (2012) Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. J Clim. doi:10.1175/JCLI-D-12-00305.1, [accepted for publication]

  • Tarnocai C, Canadell J, Schuur E, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23(2):GB2023. doi:10.1029/2008GB003327

    Article  Google Scholar 

  • Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Met Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Velichko A, Nechaev V (1992) Toward the estimation of the permafrost dynamics over the North Eurasia under global climate change. Trans (Doklady) RAS Earth Sci Sect 324(3):667–671

    Google Scholar 

  • Volodin E, Lykosov V (1998) Parametrization of heat and moisture transfer in the soil–vegetation system for use in atmospheric general circulation models: 2. formulation and simulations based on local observational data. Izvestiya Atmos Ocean Phys 34(4):405–416

    Google Scholar 

  • Volodina E, Bengtsson L, Lykosov V (2000) Parametrization of heat and moisture transfer processes in the snow cover for seasonal variations of the land hydrological cycle. Russ Meteorol Hydrol 25(5):5–14

    Google Scholar 

  • Zhang T, Barry R, Knowles K, Heginbottom J, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23(2):132–154

    Article  Google Scholar 

  • Zhang Y, Chen W, Riseborough D (2008) Disequilibrium response of permafrost thaw to climate warming in canada over 1850–2100. Geophys Res Lett 35(2):L02502. doi:10.1029/2007GL032117

    Google Scholar 

Download references

Acknowledgments

The results of this paper were reported at the conference ENVIROMIS-2012 (Irkutsk, summer 2012). The authors are grateful to participants of this conference for important feedbacks on the presented results, especially for E. A. Dyukarev and V. N. Krupchatnikov. In addition, authors thank anonymous referee whose comments greatly improved the paper. The work has been supported by the the President of Russia Grant 5467.2012.5, by the Russian Foundation for Basic Research, by the Programs of the Russian Academy of Sciences, and by the Programs of the Russian Ministry for Science and Education (contracts 14.740.11.1043, 21.519.11.5004, 11.519.11.5006, and 74–OK/11–4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Eliseev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V., Demchenko, P.F., Arzhanov, M.M. et al. Transient hysteresis of near-surface permafrost response to external forcing. Clim Dyn 42, 1203–1215 (2014). https://doi.org/10.1007/s00382-013-1672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1672-5

Keywords

Navigation