Skip to main content

Advertisement

Log in

Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965–2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean–atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the Atlantic. This meridional gradient of temperature is associated with a southward shift of the tropical rains. The free surface models also show similar sea-level fingerprints notably with a comma-shape of high sea-level rise following the Canary Current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Biastoch A, Böning CW, Getzlaff J, Molines J-M, Madec G (2008) Mechanisms of interannual—decadal variability in the meridional overturning circulation of the mid-latitude North Atlantic Ocean. J Clim 21:6599–6615. doi:10.1175/2008JCLI2404.1

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33(21):1–5. doi:10.1029/2006GL026906

    Article  Google Scholar 

  • Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models. J Phys Oceanogr 17:970–985

    Article  Google Scholar 

  • Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657

    Article  Google Scholar 

  • Cazenave A, Remy F (2011) Sea level and climate: measurements and causes of changes. Wiley Interdiscip Rev 2:647–662. doi:10.1002/wcc.139

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496

    Article  Google Scholar 

  • Christoffersen P, Mugford RI, Heywood KJ, Joughin I, Dowdeswell JA, Syvitski JPM, Luckman A, Benham TJ (2011) Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere 5(3):701–714. doi:10.5194/tc-5-701-2011

    Article  Google Scholar 

  • Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. doi:10.1029/2006RG000204

    Article  Google Scholar 

  • Condron A, Winsor P (2011) A subtropical fate awaited fresh water discharged from glacial Lake Agassiz. Geophys Res Lett 38:L03705. doi:10.1029/2010GL046011

    Article  Google Scholar 

  • Crowley TJ (1992) North Atlantic deep waters cools the Southern Hemisphere. Paleoceanography 7:489–497

    Article  Google Scholar 

  • Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modelling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34:L1070

    Article  Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX., Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N (submitted) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn

  • Fedoseev A (1970) Geostrophic circulation of surface waters on the shelf of north-west Africa. Rapp P-V Reun Cons Int Explor Mer 159:32–37

    Google Scholar 

  • Frankignoul C, Deshayes J, Curry R (2009) The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Clim Dyn. doi:10.1007/s00382-008-0523-2

  • Gaspar P (1988) Modelling the seasonal cycle of the upper ocean, 1. Phys Oceanogr 18:161–180

    Article  Google Scholar 

  • Gerdes R, Hurlin W, Griffies SM (2006) Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Model 12(3–4):416–435. ISSN:1463-5003, doi:10.1016/j.ocemod.2005.08.003

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Gregory JM, Tailleux R (2011) Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Clim Dyn 37:893–914

    Article  Google Scholar 

  • Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10(5):901–918. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Greve R, Hutter K, Giu E (1995) Polythermal three-dimensional modelling of the Greenland ice sheet with varied geothermal heat flux. Ann Glaciol 21:8–12

    Google Scholar 

  • Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean fresh water transport. Geophys Res Lett 38:L10605. doi:10.1029/2011GL047208

    Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130 000 years. Quat Res 29:142–152

    Article  Google Scholar 

  • Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1(10):659–664. doi:10.1038/ngeo316

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W, Yin J (2011) Effect of the potential melting of the Greenland ice sheet on the meridional overturning circulation and global climate in the future. Deep Sea Res Part II 58(17–18):1914–1926. doi:10.1016/j.dsr2.2010.10.069

    Article  Google Scholar 

  • Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12(8):2169–2188. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Huybrechts P, Janssens I, Poncin C, Fichefet T (2002) The response of the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice-sheet model. Ann Glaciol 35(1):409–415. doi:10.3189/172756402781816537

    Article  Google Scholar 

  • Johns WE, Shay TJ, Bane JM, Watts DR (1995) Gulf Stream structure, transport and recirculation near 68°W. J Geophys Res 100:817–838

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33, Article Number: L17708

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (submitted) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-earth system model. J Adv Model Earth Syst

  • Kageyama M, Paul A, Roche DM, Van Meerbeeck CJ (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Johns WE, Hirschi JJ-M, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  • Kleinen T, Osborn TJ, Briffa KR (2009) Sensitivity of climate response to variations in fresh water hosing location. Ocean Dyn 59:509–521. doi:10.1007/s10236-009-0189-2

    Article  Google Scholar 

  • Kopp RE, Mitrovica JX, Griffies SM, Yin J, Hay CC, Stouffer RJ (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Chang 103(3–4). doi:10.1007/s10584-010-9935-1

  • Large WG, Yeager SG (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi:10.1007/s00382-008-0441-3

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403. doi:10.1029/94RG01872

    Article  Google Scholar 

  • Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse resolution climate model. Geophys Res Lett 34:L24605

    Article  Google Scholar 

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Levitus S et al (1998) Introduction, vol 1. World Ocean Database 1998. NOAA Atlas NESDIS 18, NOAA/NESDIS, U.S. Dept. of Commerce, Washington, DC

  • Lorbacher K, Dengg J, Böning CW, Biastoch A (2010) Regional patterns of sea level change related to interannual variability and multi-decadal trends in the Atlantic meridional overturning circulation. J Clim 23:4243–4254. doi:10.1175/2010JCLI3341.1

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27, ISSN:1288-1619

  • Maier-Reimer E, Mikolajewicz U (1989) Experiments with an OGCM on the cause of the Younger Dryas. MPI Rep 39, Hamburg, Germany

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1:841–866

    Article  Google Scholar 

  • Marsh R, Desbruyeres D, Bamber JL, De Cuevas BA, Coward AC, Aksenov Y (2010) Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci 6(3):749–760

    Article  Google Scholar 

  • Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26. doi:10.1007/s00382-009-0640-6

    Google Scholar 

  • Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38:2377–2388. doi:10.1007/s00382-011-1172-4

    Google Scholar 

  • Mignot J, Frankignoul C (2005) On the variability of the Atlantic meridional overturning circulation, the NAO and the ENSO in the Bergen Climate Model. J Clim 18(13):2361–2375

    Article  Google Scholar 

  • Mignot J, Frankignoul C (2010) Local and remote impacts of a tropical Atlantic salinity anomaly. Clim Dyn 35(7–8):1133–1147

    Article  Google Scholar 

  • Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shut-down of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898

    Article  Google Scholar 

  • Mikolajewicz U, Maier-Reimer E (1994) Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J Geophys Res 99(C11):22633–22644

    Article  Google Scholar 

  • Mikolajewicz U, Vizcaíno M, Jungclaus J, Schurgers G (2007) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys Res Lett 34:L18706. doi:10.1029/2007GL031173

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029

    Article  Google Scholar 

  • Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37:L19608. doi:10.1029/2010GL044517

  • Nakamura M, Stone PH, Marotzke J (1994) Destabilization of the thermohaline circulation by atmospheric eddy transports. J Clim 7:1870–1882

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External 675 forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi:10.1038/ngeo955

    Article  Google Scholar 

  • Pacanowski R, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451

    Article  Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical North Atlantic during the last glacial. Science 290:1947–1951

    Article  Google Scholar 

  • Pritchard HD, Arthern RJ, Vaughan DG, Edwards L (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971–975. doi:10.1038/nature08471

    Article  Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419(6903):207–214. doi:10.1038/nature01090

    Article  Google Scholar 

  • Rahmstorf S, Willebrand J (1995) The role of temperature feedback in stabilizing the thermohaline circulation. J Phys Oceanogr 25:787–805

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich IV, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi:10.1029/2005GL023655

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503

    Google Scholar 

  • Roche DM (2009) A systematic study of the impact of fresh water pulses with respect to different geographical locations. Clim Dyn. doi:10.1007/s00382-009-0578-8

    Google Scholar 

  • Rooth C (1982) Hydrology and ocean circulation. Progr Ocean 11:131–149

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface and varying levels: a new formulation for ocean general circulation models. J Geophys Res 23:927–942

    Google Scholar 

  • Rypina II, Pratt LJ, Lozier MS (2011) Near-surface transport pathways in the North Atlantic Ocean: looking for throughput from the subtropical to the subpolar gyre. J Phys Oceanogr 41(5):911–925. doi:10.1175/2010JPO4498.1

    Article  Google Scholar 

  • Saenko OA, Weaver AJ, Robitaille DY, Flato GM (2007) Warming of the subpolar Atlantic triggered by fresh water discharge at the continental boundary. Geophys Res Lett 34:L15604. doi:10.1029/2007GL030674

    Article  Google Scholar 

  • Sasgen I, van den Broeke M, Bamber JL, Rignot E, Sørensen LS, Wouters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303. doi:10.1016/j.epsl.2012.03.033

    Article  Google Scholar 

  • Schiller A, Mikolajewicz U, Voss R (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim Dyn 13(5):325–347

    Article  Google Scholar 

  • Shimokawa S, Matsuura T (1999) The asymmetry of recirculation of a double gyre in a two layer ocean. J Oceanogr 55:449–462

    Article  Google Scholar 

  • Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06022. doi:10.1029/2006JC004079

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  • Sterl A, Bintanja R, Brodeau L, Gleeson E, Koenigk T, Schmith T, Semmler T, Severijns C, Wyser K, Yang S (2011) A look at the ocean in the EC-Earth climate model. Clim Dyn (accepted for publication). doi:10.1007/s00382-011-1239-2

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230

    Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3(3):182–186. doi:10.1038/ngeo764

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2× CO2 stabilization experiment with land-ice melting. Clim Dyn 29:521–534

    Article  Google Scholar 

  • Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of fresh water release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377–6403

    Article  Google Scholar 

  • Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16:3213–3226

    Google Scholar 

  • Vizcaíno M, Mikolajewicz U, Jungclaus J, Schurgers G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 34(2–3):301–324. doi:10.1007/s00382-009-0591-y

    Article  Google Scholar 

  • Walsh KM, Howat IM, Ahn Y, Enderlin EM (2012) Changes in the marine-terminating glaciers of central east Greenland, 2000–2010. Cryosphere 6(1):211–220. doi:10.5194/tc-6-211-2012

    Article  Google Scholar 

  • Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic earth system model. Geophys Res Lett 32(23):2005

    Article  Google Scholar 

  • Yin J, Stouffer RJ, Spelman MJ, Griffies SM (2010) Evaluating the uncertainty induced by the virtual salt flux assumption in climate simulations and future projections. J Clim 23:80–96. doi:10.1175/2009JCLI3084.1

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705. doi:10.1029/2008GL035463

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 212643 (THOR). DS and JM also acknowledge financial support from the CNRS/INSU/LEFE/EVE French program through the Ti Ammo project. CR performed these simulations at the German Climate Computing Centre (DKRZ), Hamburg. DS and JM benefited of the HPC resources of CCRT and IDRIS made available by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Swingedouw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swingedouw, D., Rodehacke, C.B., Behrens, E. et al. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41, 695–720 (2013). https://doi.org/10.1007/s00382-012-1479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1479-9

Keywords

Navigation