Skip to main content
Log in

Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Ivabradine slows the heart rate (HR) by selectively inhibiting the I(f) current in the sinus node without a negative inotropic effect. We aimed to investigate the effects of ivabradine on thyroid hormone-induced left ventricular (LV) remodeling and ion channel activity in rats. Thirty Sprague–Dawley rats were randomly selected into the groups of control, injection of l-thyroxine (T4, 100 μg/kg/day), and injection of l-thyroxine with ivabradine (T4-Iva, T4 + 10 mg/kg/day). Circumferential (S circ), radial (S rad), and longitudinal (S long) strains were assessed by speckle tracking echocardiography (STE). Myocardial width and fibrosis were assessed from histological LV cross sections, and electrophysiological analysis was done by patch clamp method. In comparison with the control group, the T4 group showed significantly increased HR and LV end-systolic diameter (LVESD), reduced S circ (−16.04 ± 3.95 vs. −7.84 ± 2.98 %, p < 0.001), S rad (20.94 ± 3.81 vs. 40.57 ± 6.70 %, p < 0.001), and S long (−15.26 ± 5.15 vs. −23.83 ± 5.19 %, p < 0.001), despite the 59.5 % increase of average I Ca,L density at 0 mV (13.4 ± 1.2 pA/pF) compared to control group (8.4 ± 0.8 pA/pF). Treatment with ivabradine significantly reduced HR and LVESD, improved SRcirc, S long and SRlong in the T4 group, and the average I Ca,L density at 0 mV in T4-Iva groups (9.9 ± 1.6 pA/pF) was restored to the control level. Morphologically, the T4 group showed significantly increased cardiomyocyte width (25.3 ± 1.89 vs. 18.90 ± 1.14 μm in control, p < 0.001) and fibrosis, which were not significantly changed by ivabradine. In conclusion, selective HR reduction by ivabradine attenuates thyroid hormone-induced reduction of myocardial deformation and altered intracellular Ca2+ handling without modification of the myocyte hypertrophy with fibrosis in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87:968–974

    Article  PubMed  CAS  Google Scholar 

  2. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    Article  PubMed  CAS  Google Scholar 

  3. Khandwala HM (2004) A case of congestive heart failure due to reversible dilated cardiomyopathy caused by hyperthyroidism. South Med J 97:1001–1003

    Article  PubMed  Google Scholar 

  4. Kim JY, Kim BS, Kang JH (2001) Dilated cardiomyopathy in thyrotoxicosis and Moyamoya disease. Int J Cardiol 80:101–103

    Article  PubMed  CAS  Google Scholar 

  5. Riaz K, Forker AD, Isley WL, Hamburg MS, McCullough PA (2003) Hyperthyroidism: a “curable” cause of congestive heart failure–three case reports and a review of the literature. Congest Heart Fail 9:40–46

    Article  PubMed  Google Scholar 

  6. Watanabe E, Ohsawa H, Noike H, Okamoto K, Tokuyama A, Kanai M, Mineoka K, Miyashita Y, Kantoh S, Hiruta N (1995) Dilated cardiomyopathy associated with hyperthyroidism. Intern Med 34:762–767

    Article  PubMed  CAS  Google Scholar 

  7. Yu YH, Bilezikian JP (2000) Tachycardia-induced cardiomyopathy secondary to thyrotoxicosis: a young man with previously unrecognized Graves’ disease. Thyroid 10:923–927

    Article  PubMed  CAS  Google Scholar 

  8. Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M (2003) Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 284:H108–H115

    PubMed  CAS  Google Scholar 

  9. Cacciatori V, Bellavere F, Pezzarossa A, Dellera A, Gemma ML, Thomaseth K, Castello R, Moghetti P, Muggeo M (1996) Power spectral analysis of heart rate in hyperthyroidism. J Clin Endocrinol Metab 81:2828–2835

    Article  PubMed  CAS  Google Scholar 

  10. von Olshausen K, Bischoff S, Kahaly G, Mohr-Kahaly S, Erbel R, Beyer J, Meyer J (1989) Cardiac arrhythmias and heart rate in hyperthyroidism. Am J Cardiol 63:930–933

    Article  Google Scholar 

  11. Sun ZQ, Ojamaa K, Nakamura TY, Artman M, Klein I, Coetzee WA (2001) Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol 33:811–824

    Article  PubMed  CAS  Google Scholar 

  12. Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch 385:11–19

    Article  PubMed  CAS  Google Scholar 

  13. Brown HF, DiFrancesco D, Noble SJ (1979) How does adrenaline accelerate the heart? Nature 280:235–236

    Article  PubMed  CAS  Google Scholar 

  14. Thollon C, Cambarrat C, Vian J, Prost JF, Peglion JL, Vilaine JP (1994) Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 112:37–42

    Article  PubMed  CAS  Google Scholar 

  15. Savelieva I, Camm AJ (2006) I f inhibition with ivabradine: electrophysiological effects and safety. Drug Saf 31:95–107

    Article  Google Scholar 

  16. Becker M, Bilke E, Kuhl H, Katoh M, Kramann R, Franke A, Bucker A, Hanrath P, Hoffmann R (2006) Analysis of myocardial deformation based on pixel tracking in two-dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 92:1102–1108

    Article  PubMed  CAS  Google Scholar 

  17. Thomas JD, Popovic ZB (2006) Assessment of left ventricular function by cardiac ultrasound. J Am Coll Cardiol 48:2012–2025

    Article  PubMed  Google Scholar 

  18. Cohen MV, Schulman IC, Spenillo A, Surks MI (1981) Effects of thyroid hormone on left ventricular function in patients treated for thyrotoxicosis. Am J Cardiol 48:33–38

    Article  PubMed  CAS  Google Scholar 

  19. Friedman MJ, Okada RD, Ewy GA, Hellman DJ (1982) Left ventricular systolic and diastolic function in hyperthyroidism. Am Heart J 104:1303–1308

    Article  PubMed  CAS  Google Scholar 

  20. Forfar JC, Matthews DM, Toft AD (1984) Delayed recovery of left ventricular function after antithyroid treatment. Further evidence for reversible abnormalities of contractility in hyperthyroidism. Br Heart J 52:215–222

    Article  PubMed  CAS  Google Scholar 

  21. Feldman T, Borow KM, Sarne DH, Neumann A, Lang RM (1986) Myocardial mechanics in hyperthyroidism: importance of left ventricular loading conditions, heart rate and contractile state. J Am Coll Cardiol 7:967–974

    Article  PubMed  CAS  Google Scholar 

  22. McKinsey TA, Olson EN (2005) Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115:538–546

    PubMed  CAS  Google Scholar 

  23. Weber KT (2000) Fibrosis and hypertensive heart disease. Curr Opin Cardiol 15:264–272

    Article  PubMed  CAS  Google Scholar 

  24. Sernia C, Marchant C, Brown L, Hoey A (1993) Cardiac angiotensin receptors in experimental hyperthyroidism in dogs. Cardiovasc Res 27:423–428

    Article  PubMed  CAS  Google Scholar 

  25. Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T (1997) Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol 272:E227–E232

    PubMed  CAS  Google Scholar 

  26. Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med 25:176–201

    PubMed  CAS  Google Scholar 

  27. Uehara Y, Azuma Y, Minai K, Yoshida H, Yoshimura M, Shimizu M (2012) Endothelin-1 prolongs intracellular calcium transient decay in neonatal rat cardiac myocytes. Heart Vessels 27:98–105

    Article  PubMed  Google Scholar 

  28. Brooksby P, Levi AJ, Jones JV (1993) The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. J Hypertens 11:611–622

    Article  PubMed  CAS  Google Scholar 

  29. Keung EC (1989) Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64:753–763

    Article  PubMed  CAS  Google Scholar 

  30. Scamps F, Mayoux E, Charlemagne D, Vassort G (1990) Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation. Circ Res 67:199–208

    Article  PubMed  CAS  Google Scholar 

  31. Gomez AM, Benitah JP, Henzel D, Vinet A, Lorente P, Delgado C (1997) Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am J Physiol 272:H1078–H1086

    PubMed  CAS  Google Scholar 

  32. Xiao YF, McArdle JJ (1994) Elevated density and altered pharmacologic properties of myocardial calcium current of the spontaneously hypertensive rat. J Hypertens 12:783–790

    Article  PubMed  CAS  Google Scholar 

  33. Kreuzberg, Theissen P, Schicha H, Schroder F, Mehlhorn U, de Vivie ER, Boknik P, Neumann J, Grohe C, Herzig S (2000) Single-channel activity and expression of atrial L-type Ca channels in patients with latent hyperthyroidism. Am J Physiol 278:H723–H730

    CAS  Google Scholar 

  34. Mager S, Palti Y, Binah O (1992) Mechanism of hyperthyroidism-induced modulation of the L-type Ca2+ current in guinea pig ventricular myocytes. Pflugers Arch 421:425–430

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe H, Ma M, Washizuka T, Komura S, Yoshida T, Hosaka Y, Hatada K, Chinushi M, Yamamoto T, Watanabe K, Aizawa Y (2003) Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium. Biochem Biophys Res Commun 308:439–444

    Article  PubMed  CAS  Google Scholar 

  36. Kashimura T, Kodama M, Tanaka K, Sonoda K, Watanabe S, Ohno Y, Tomita M, Obata H, Mitsuma W, Ito M, Hirono S, Hanawa H, Aizawa Y (2012) Mechanical alternans in human idiopathic dilated cardiomyopathy is caused with impaired force–frequency relationship and enhanced poststimulation potentiation. Heart Vessels. doi:10.1007/s00380-012-0251-8

    PubMed  Google Scholar 

  37. Yu H, Chang F, Cohen IS (1993) Pacemaker current exists in ventricular myocytes. Circ Res 72:232–236

    Article  PubMed  CAS  Google Scholar 

  38. Ranjan R, Chiamvimonvat N, Thakor NV, Tomaselli GF, Marban E (1998) Mechanism of anode break stimulation in the heart. Biophys J 74:1850–1863

    Article  PubMed  CAS  Google Scholar 

  39. Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G, Mugelli A (1997) Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 95:568–571

    Article  PubMed  CAS  Google Scholar 

  40. Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ (1998) Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65

    Article  PubMed  CAS  Google Scholar 

  41. Cerbai E, Barbieri M, Mugelli A (1996) Occurrence and properties of the hyperpolarization-activated current I f in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 94:1674–1681

    Article  PubMed  CAS  Google Scholar 

  42. Ceconi C, Comini L, Suffredini S, Stillitano F, Bouly M, Cerbai E, Mugelli A, Ferrari R (2011) Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol 300:366–373

    Article  Google Scholar 

  43. Suffredini S, Stillitano F, Comini L, Bouly M, Brogioni S, Ceconi C, Ferrari R, Mugelli A, Cerbai E (2012) Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol 165:1457–1466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare that no competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Im Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.H., Cho, K.I., Kim, S.M. et al. Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat. Heart Vessels 28, 524–535 (2013). https://doi.org/10.1007/s00380-012-0304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-012-0304-z

Keywords

Navigation