Skip to main content
Log in

Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Several hundred hydrothermal vent complexes were formed in the Vøring Basin as a consequence of magmatic sill emplacement in the late Palaeocene. The 6607/12-1 exploration well was drilled through a 220-m-thick sequence of Eocene–Miocene diatomites with carbonate nodules above the apex of one of these vent complexes. Analysed calcites and dolomites from this interval have isotopic signatures typical for methane seep carbonates, with low δ13C signatures of −28 to −54‰ PDB. The data suggest that the vent complex acted as a fluid migration pathway for about 50×106 years after its formation, leading to near-surface microbial activity and seep carbonate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6A–F.
Fig. 7.

Similar content being viewed by others

References

  • Adshead JD (1996) Stable isotopes, 14C dating, and geochemical characteristics of carbonate nodules and sediment from an active vent field, northern Juan de Fuca Ridge, northeast Pacific. Chem Geol 129:133–152

    Article  CAS  Google Scholar 

  • Aharon P (1994) Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: an introduction. Geo-Mar Lett 14:69–73

  • Aiello IW, Garrison RE, Moore JC, Kastner M, Stakes D (2001) Anatomy and origin of carbonate structures in a Miocene cold-seep field. Geology 29:1111–1114

    Article  CAS  Google Scholar 

  • Aloisi G, Pierre C, Rouchy J-M, Foucher J-P, Woodside J, MEDINAUT Scientific Party (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization. Earth Planet Sci Lett 184:321–338

    CAS  Google Scholar 

  • Blunck TD, Blanchet H (1986) 6607/12-1 final report. Elf Aquitane Norge a/s

  • Blystad P, Brekke H, Færseth RB, Larsen B, Skogseid J, Tørudbakken B (1995) Structural elements of the Norwegian continental shelf. Part II. The Norwegian Sea region. The Norwegian Petroleum Directorate, NPD Bull no 8

  • Boetius A, Ravenschlag K, Scubert CJ, Rickert D, Widdel F, Gieseke A, Amman R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    CAS  PubMed  Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    CAS  Google Scholar 

  • Brooks JM, Kennicutt MC, Fay RR, McDonald TJ (1984) Thermogenic gas hydrates in the Gulf of Mexico. Science 225:409–411

    CAS  Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozioc convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94

    Article  CAS  Google Scholar 

  • Cita MB, Woodside JM, Ivanov MK, Kidd RB, Limonov AF, Scientific Party Cruise TTR3—Leg 2 (1995) Fluid venting from a mud volcano in the Mediterranean Ridge Diapiric Belt. Terra Nova 7:453–458

    Google Scholar 

  • Deyhle A, Kopf A (2001) Deep fluids and ancient pore waters at the backstop: stable isotope systematics (B, C, O) of mud-volcano deposits on the Mediterranean Ridge accretionary wedge. Geology 29:1031–1034

    Article  CAS  Google Scholar 

  • Dia AN, Castrec-Rouelle M, Boulègue J, Comeau P (1999) Trinidad mud volcanoes: where do the expelled fluids come from? Geochim Cosmochim Acta 63:1023–1038

    Article  CAS  Google Scholar 

  • Elvert M, Greinert J, Suess E (2001) Carbon isotopes of biomarkers derived from methane-oxidizing microbes at Hydrate Ridge, Cascadia convergent margin. Geophys Monogr 124:115–129

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    CAS  Google Scholar 

  • Gaillard C, Rio M, Rolin Y, Roux M (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of Southwestern France compared to other world examples. Soc Econ Paleontol Mineral 7:451–465

    Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr 124:99–113

    Google Scholar 

  • Hein JR, O’Neil JR, Jones MG (1979) Origin of authigenic carbonates in sediment from the deep Bering Sea. Sedimentology 26:681–705

    CAS  Google Scholar 

  • Heinrich R (1989) Diagenetic environments of authigenic carbonates and opal-CT crystallization in lower Miocene to upper Oligocene deposits of the Norwegian Sea (ODP Site 643, Leg 104). In: Eldholm O, Thiede J, Taylor E (eds) Proc Ocean Drilling Program, Sci Results 104:233–247

  • Hesse R, Harrison WE (1981) Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet Sci Lett 55:453–462

    Article  CAS  Google Scholar 

  • Higgins GE, Saunders JB (1974) Mud volcanoes—their nature and origin. Verhandl Naturf Ges Basel 84:101–152

    Google Scholar 

  • Higgins IJ, Quale JR (1970) Oxygenation of methane by methane-grown Pseudomonas methanica and Methanomonas methanooxidans. Biochem J 118:201–208

    CAS  PubMed  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Hovland M, Judd A (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London

    Google Scholar 

  • Hovland M, Talbot MR, Qvale H, Olaussen S, Aasberg L (1987) Methane-related carbonate cements in pockmarks of the North Sea. J Sediment Petrol 57:881–892

    CAS  Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213

    CAS  Google Scholar 

  • Jakubov AA, Ali-Zade AA, Zeinalov MM (1971) Grayazeve vulkany Azerbaidzhanskoi SSR: Atlas (Mud volcanoes of the Azerbaijan SSR). Azerbaijan Acad Sci, Baku

    Google Scholar 

  • Jamveit B, Svensen H, Podladchikov JJ, Planke S (2003) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geol Soc Lond Spec Publ (in press)

  • Kohn MJ, Riciputi LR, Stakes D, Orange DL (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization? Am Mineral 83:1454–1468

    CAS  Google Scholar 

  • Kopf A, Behrmann JH (2000). Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. Geol Soc Spec Publ 174:169–204

    Google Scholar 

  • Le Pichon X, Foucher J-P, Boulègue J, Henry P, Lallemant S, Benedetti M, Avedik F, Mariotti A (1990) Mud volcano field seaward of the Barbados Accretionary Complex: a submersible survey. J Geophys Res 95(B6):8931–8943

    Google Scholar 

  • Martin JB, Kastner M, Henry P, Le Pichon X, Lallement S (1996) Chemical and isotopic evidence of sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge. J Geophys Res 101:20325–20345

    CAS  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  CAS  Google Scholar 

  • Mørk MBE, Leith DA, Fanavoll S (2001) Origin of carbonate-cemented beds on the Naglfar Dome, Vøring Basin, Norwegian Sea. Mar Petrol Geol 18:223–234

    Article  Google Scholar 

  • Paull CK, Chanton JP, Neumann AC, Coston JA, Martens CS (1992) Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida escarpment. Palaios 7:361–375

    Google Scholar 

  • Peckmann J, Reimer A, Luth U, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  CAS  Google Scholar 

  • Raisewell R (1987) Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones. In: Marshall JD (ed) The diagenesis of sedimentary sequences. Geol Soc Spec Publ 36:41–54

    Google Scholar 

  • Reeburg WS (1980) Anaerobic methane oxidation: rate depth distribution in Skan Bay sediments. Earth Planet Sci Lett 47:345–352

    Article  CAS  Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    CAS  Google Scholar 

  • Roberts HH, Aharon P (1994) Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Mar Lett 14:135–148

    Google Scholar 

  • Robertson A, Ocean Drilling program Leg 160 Scientific Party (1996) Mud volcanism on the Mediterranean Ridge: initial results of Ocean Drilling Program Leg 160. Geology 24:239–242

    Article  CAS  Google Scholar 

  • Simoneit BRT, Kawka OE, Brault M (1988) Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem Geol 71:169–182

    Article  CAS  Google Scholar 

  • Stakes DS, Orange D, Paduan JB, Salamy KA, Mahler N (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Article  CAS  Google Scholar 

  • Suess E, Whiticar MJ (1989) Methane-derived CO2 in pore fluids expelled from the Oregon subduction zone. Palaeogeogr Palaeoclimatol Palaeoecol 71:119–136

    Article  Google Scholar 

  • Ussler W, Paull CK (1995) Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Mar Lett 15:37–44

    Google Scholar 

  • Vinogradov AP, Galimov EM (1970) Carbon isotopes and the origin of petroleum. Geokhimiya 3:275–296

    Google Scholar 

  • Whiticar MJ, Suess E, Wehner H (1985) Thermogenic hydrocarbons in surface sediments of the Bransfield Strait, Antarctic Peninsula. Nature 314:87–90

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant 120897 to Jamtveit/Svensen and by the FUNN program (analytical work) from the Norwegian Research Council. We would like to thank TGS-NOPEC for access to seismic data, and Debra Stakes and an anonymous reviewer for constructive comments. This work was motivated by a seismic profile appearing in an article by H. Carstens in GEO (September 2001), showing the position of the 6607/12-1 borehole and the eye structure (described as a buried mud volcano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Svensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensen, H., Planke, S., Jamtveit, B. et al. Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea. Geo-Mar Lett 23, 351–358 (2003). https://doi.org/10.1007/s00367-003-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-003-0141-2

Keywords

Navigation