Skip to main content
Log in

A greedy sparse meshless method for solving heat conduction problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we introduce a greedy approximation algorithm for solving the transient heat conduction problem. This algorithm can overcome on some of challenges of the full meshless kernel-based methods such as ill-conditioning and computational cost associated with the dense linear systems that arise. In addition, the greedy algorithm allows to control the consistency error by explicit calculation. First, the space derivatives of the heat conduction equation are discretized to a finite number of test functional equations, and a greedy sparse discretization is applied for approximating the linear functionals. Each functional is stably approximated by some few trial points with an acceptable accuracy. Then a time-stepping method is employed for the time derivative. Stability of the scheme is also discussed. Finally, numerical results are presented in three test cases. These experiments show that greedy approximation approach is accurate and fast, and yields the better conditioning in contrast with the fully meshless methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dehghan M, Najafi M (2016) Numerical solution of a nonclassical two-phase Stefan problem via radial basis function (RBF) collocation methods. Eng Anal Bound Elem 72:111–127

    Article  MathSciNet  Google Scholar 

  2. DeVore RA (1998) Nonlinear approximation. Acta Numer 7:51–150

    Article  MathSciNet  MATH  Google Scholar 

  3. DeVore RA, Temlyakov V (1996) Some remarks on greedy algorithms. Adv Comput Math 5:173–187

    Article  MathSciNet  MATH  Google Scholar 

  4. Fasshauer GE, McCourt MJ (2012) Stable evaluation of Gaussian radial basis function interpolants. SIAM J Sci Comput 34(2):A737–A762

    Article  MathSciNet  MATH  Google Scholar 

  5. Fornberg B, Larsson E, Flyer N (2011) Stable computations with Gaussian radial basis functions. SIAM J Sci Comput 33(2):869–892

    Article  MathSciNet  MATH  Google Scholar 

  6. Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65(4):627–637

    Article  MathSciNet  MATH  Google Scholar 

  7. Fornberg B, Piret C (2007) A stable algorithm for at radial basis functions on a sphere. SIAM J Sci Comput 30(1):60–80

    Article  MathSciNet  MATH  Google Scholar 

  8. Fornberg B, Wright G (2004) Stable computation of multiquadric interpolants for all values of the shape parameter. Comput Math Appl 48(5–6):853–867

    Article  MathSciNet  MATH  Google Scholar 

  9. Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Compt 93:73–82

    Article  MathSciNet  MATH  Google Scholar 

  10. Franke C, Schaback R (1998) Convergence orders of meshless collocation methods using radial basis functions. Adv Comput Math 8:381–399

    Article  MathSciNet  MATH  Google Scholar 

  11. Hon YC, Schaback R (2001) On unsymmetric collocation by radial basis functions. Appl Math Comput 119:177–186

    MathSciNet  MATH  Google Scholar 

  12. Hon YC, Schaback R, Zhou X (2003) An adaptive greedy algorithm for solving large RBF collocation problems. Numer Algorithms 32:13–25

    Article  MathSciNet  MATH  Google Scholar 

  13. Ilati M, Dehghan M (2015) The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng Anal Bound Elem 52:99–109

    Article  MathSciNet  Google Scholar 

  14. Ling L, Opfer R, Schaback R (2006) Results on meshless collocation techniques. Eng Anal Bound Elem 30:247–253

    Article  MATH  Google Scholar 

  15. Minkowycz W, Sparrow E, Schneider G, Pletcher R (1988) Handbook of numerical heat transfer. John Wiley and Sons Inc, New York

    Google Scholar 

  16. Mirzaei D (2016) A greedy meshless local Petrov-Galerkin method based on radial basis functions. Numer Methods Part Differ Equ 32(3):847–861

    Article  MathSciNet  MATH  Google Scholar 

  17. Mirzaei D, Schaback R (2014) Solving heat conduction problems by the Direct Meshless Local Petrov-Galerkin (DMLPG) method. Numer Algorithms 65(2):275–291

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirzaei D, Dehghan M (2011) MLPG method for transient heat conduction problem with MLS as trial approximation in both time and space domains. Comput Model Eng Sci (CMES) 72:185–210

    MathSciNet  MATH  Google Scholar 

  19. Mouattamid M, Schaback R (2009) Recursive kernels. Anal Theory Appl 25:301–316

    Article  MathSciNet  MATH  Google Scholar 

  20. Muller S, Schaback R (2009) A Newton basis for kernel spaces. J Approx Theory 161:645–655

    Article  MathSciNet  MATH  Google Scholar 

  21. Narcowich FJ, Ward JD (1994) Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math Comput 63:661–687

    Article  MathSciNet  MATH  Google Scholar 

  22. Pazouki M, Schaback R (2011) Bases for kernel-based spaces. J Comput Appl Math 236:575–588

    Article  MathSciNet  MATH  Google Scholar 

  23. Sladek V, Sladek J, Tanaka M, Zhang C (2005) Transient heat conduction in anisotropic and functionally graded media by local integral equations. Eng Anal Bound Elem 29:1047–1065

    Article  MATH  Google Scholar 

  24. Schaback R (2014) Greedy sparse linear approximations of functionals from nodal data. Numer Algorithms 67:531–547

    Article  MathSciNet  MATH  Google Scholar 

  25. Schaback R (2013) A computational tool for comparing all linear PDE solvers. Adv Comput Math 41:333–355

    Article  MATH  Google Scholar 

  26. R. Schaback, Direct discretizations with applications to meshless methods for PDEs, Dolomites Research Notes on Approximation, Proceedings of DWCAA12 6 (2013) 37–50

  27. Schaback R, Wendland H (2000) Adaptive greedy techniques for approximate solution of large RBF systems. Numer Algorithms 24:239–254

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen Q (2011) Numerical solution of the Sturm-Liouville problem with local rbf-based differential quadrature collocation method. J Comput Math 88(2):285–295

    MathSciNet  MATH  Google Scholar 

  29. Scott AS (2012) A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. Appl Math Comput 218(19):9853–9865

    MathSciNet  MATH  Google Scholar 

  30. Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Model 33(3):1729–1738

    Article  MathSciNet  MATH  Google Scholar 

  31. Temlyakov VN (1998) The best m-term approximation and greedy algorithms. Adv Comput Math 8:249–265

    Article  MathSciNet  MATH  Google Scholar 

  32. Temlyakov VN (2008) Greedy approximation. Acta Numer 17:235–409

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Wendland, Scattered Data Approximation, Cambridge University Press, 2005

  34. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(4):389–396

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Wirtz, B. Haasdonk, A vectorial kernel orthogonal greedy algorithm, Dolomites Research Notes on Approximation, Proceedings of DWCAA12 6 (2013) 83–100

  36. Wu Z (1992) Hermite Birkhoff interpolation of scattered data by radial basis functions. Approx Theory Appl 8:1–10

    MathSciNet  MATH  Google Scholar 

  37. Zhang X, Xiang H (2015) A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems. Int J Heat Mass Trans 84:729–739

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dr. Davoud Mirzaei for his valuable remarks. In addition, authors thank the reviewers for their useful comments and suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fadaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadaei, Y., Moghadam, M.M. A greedy sparse meshless method for solving heat conduction problems. Engineering with Computers 33, 631–645 (2017). https://doi.org/10.1007/s00366-016-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0494-6

Keywords

Navigation