Skip to main content
Log in

An efficient and accurate hybrid weak-form meshless method for transient nonlinear heterogeneous heat conduction problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Our purpose is to establish a numerical method meeting the requirements of efficiency, stability, accuracy and easy-using. Faced with these demands, in this paper, a hybrid method combining the advantages of 2 weak-form meshless methods is proposed for solving steady and transient heat conduction problems with temperature-dependent thermophysical properties in heterogeneous media. In the process of the calculation for an arbitrary model discretized by the hybrid method, two different weak-form methods are used for the nodes categorized as: (1) boundary nodes, (2) near boundary interior nodes and (3) interior nodes. A Galerkin free element method (GFREM) is proposed for the interior nodes of the Cartesian grid; and the local radial point interpolation method (LRPIM) is used for the other two types of nodes. The GFREM using the Cartesian grid can greatly improve the accuracy and efficiency of the hybrid scheme. Special decomposition technology to determine the irregular integral domain for LRPIM can increase the flexibility for complex models. In addition, the full implicit finite difference scheme and Newton–Raphson method are used for solving transient nonlinear problems. And non-crossing interface integral domain and support domain are employed for heterogeneous media. Compared with other methods, numerical results show better accuracy, stability and efficiency from the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Alihemmati J, Beni YT (2019) Developing three-dimensional mesh-free Galerkin method for structural analysis of general polygonal geometries. Eng Comput. https://doi.org/10.1007/s00366-019-00749-6

    Article  Google Scholar 

  2. Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24(5):348–372. https://doi.org/10.1007/s004660050457

    Article  MATH  Google Scholar 

  3. Atluri SN, Zhu TL (2000) The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech 25(2–3):169–179. https://doi.org/10.1007/s004660050467

    Article  MATH  Google Scholar 

  4. Bourantas GC, Mountris KA, Loukopoulos VC, Lavier L, Joldes GR, Wittek A, Miller K (2018) Strong-form approach to elasticity: hybrid finite difference-meshless collocation method (FDMCM). Appl Math Model 57:316–338. https://doi.org/10.1016/j.apm.2017.09.028

    Article  MathSciNet  MATH  Google Scholar 

  5. Buhmann MD (1993) New developments in the theory of radial basis function interpolation. pp 35–75. https://doi.org/10.1142/9789814503754-0003

  6. Chen JS, Hillman M, Chi SW (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001176

    Article  Google Scholar 

  7. Chen JS, Wu CT, Yoon S, Yang Y (2015) A stabilized conforming nodal integration for Galerkin Meshfree methods. Int J Numer Methods Eng 0207:435–466. https://doi.org/10.1002/1097-0207(20010120)50

    Article  MATH  Google Scholar 

  8. Cheng AD (2012) Multiquadric and its shape parameter-a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Eng Anal Bound Elem 36(2):220–239. https://doi.org/10.1016/j.enganabound.2011.07.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiang Y, Young D, Sladek J, Sladek V (2017) Local radial basis function collocation method for bending analyses of quasicrystal plates. Appl Math Model 50:463–483. https://doi.org/10.1016/j.apm.2017.05.051

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30. https://doi.org/10.1016/j.matcom.2005.10.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang J, Zhao GF, Zhao J, Parriaux A (2009) On the truly meshless solution of heat conduction problems in heterogeneous media. Numer Heat Transf Part B Fundam 55(1):1–13. https://doi.org/10.1080/10407790802605067

    Article  Google Scholar 

  12. Fantuzzi N (2015) New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems. Curved Layer Struct 1:94–127. https://doi.org/10.2478/cls-2014-0005

    Article  Google Scholar 

  13. Fantuzzi N, Tornabene F, Bacciocchi M, Neves AM, Ferreira AJ (2017) Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates. Int J Numer Methods Eng 111(4):354–382. https://doi.org/10.1002/nme.5468

    Article  MathSciNet  Google Scholar 

  14. Fantuzzi N, Tornabene F, Viola E, Ferreira A (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542. https://doi.org/10.1007/s11012-014-0014-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng WZ, Gao XW (2016) An interface integral equation method for solving transient heat conduction in multi-medium materials with variable thermal properties. Int J Heat Mass Transf 98:227–239. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.086

    Article  Google Scholar 

  16. Flyer N, Fornberg B, Bayona V, Barnett GA (2016) On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J Comput Phys 321:21–38. https://doi.org/10.1016/j.jcp.2016.05.026

    Article  MathSciNet  MATH  Google Scholar 

  17. Franke R (1982) Scattered data interpolation: test of some methods. Math Comput 38:181–200. https://doi.org/10.2307/2007474

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao XW, Gao LF, Zhang Y, Cui M, Lv J (2019) Free element collocation method: a new method combining advantages of finite element and mesh free methods. Comput Struct 215:10–26. https://doi.org/10.1016/j.compstruc.2019.02.002

    Article  Google Scholar 

  19. Gao XW, Huang SZ, Cui M, Ruan B, Zhu QH, Yang K, Lv J, Peng HF (2017) Element differential method for solving general heat conduction problems. Int J Heat Mass Transf 115:882–894. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.039

    Article  Google Scholar 

  20. Gao XW, Li ZY, Yang K, Lv J, Peng HF, Cui M, Ruan B, Zhu QH (2018) Element differential method and its application in thermal-mechanical problems. Int J Numer Methods Eng 113(1):82–108. https://doi.org/10.1002/nme.5604

    Article  MathSciNet  Google Scholar 

  21. Gao XW, Liang Y, Xu BB, Yang K, Peng HF (2019) Cross-line elements for free element method in thermal and mechanical analyses of functionally gradient materials. Eng Anal Bound Elem 108:422–437. https://doi.org/10.1016/j.enganabound.2019.08.024

    Article  MathSciNet  MATH  Google Scholar 

  22. Hardy R (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915. https://doi.org/10.1029/JB076i008p01905

    Article  Google Scholar 

  23. Hidayat MIP (2019) Meshless local B-spline collocation method for heterogeneous heat conduction problems. Eng Anal Bound Elem 101:76–88. https://doi.org/10.1016/j.enganabound.2018.12.015

    Article  MathSciNet  MATH  Google Scholar 

  24. Hosseini SM, Sladek J, Sladek V (2019) Anisotropic transient thermoelasticity analysis in a two-dimensional decagonal quasicrystal using meshless local Petrov–Galerkin (MLPG) method. Appl Math Model 66:275–295. https://doi.org/10.1016/j.apm.2018.09.024

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu W, Gu Y, Zhang C, He X (2019) The generalized finite difference method for an inverse boundary value problem in three-dimensional thermo-elasticity. Adv Eng Softw 131:1–11. https://doi.org/10.1016/j.advengsoft.2019.02.006

    Article  Google Scholar 

  26. Jianjun Y, Jianlong Z (2017) Meshless local strong–weak (MLSW) method for irregular domain problems. Chin J Theor Appl Mech 58(4):478–485. https://doi.org/10.1007/s11434-012-5471-x

    Article  Google Scholar 

  27. Li M, Wen PH (2014) Finite block method for transient heat conduction analysis in functionally graded media. Int J Numer Methods Eng 99(5):372–390. https://doi.org/10.1002/nme.4693

    Article  MathSciNet  MATH  Google Scholar 

  28. Ling J, Yang DS, Zhai BW, Zhao ZH, Gong H (2017) Solving the single-domain transient heat conduction with heat source problem by virtual boundary meshfree Galerkin method. Int J Heat Mass Transf 115:361–367. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.061

    Article  Google Scholar 

  29. Liu G (2016) An overview on meshfree methods: for computational solid mechanics. Int J Comput Methods 13(05):1630001. https://doi.org/10.1142/s0219876216300014

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids. J Sound Vib 246(1):29–46. https://doi.org/10.1006/jsvi.2000.3626

    Article  Google Scholar 

  31. Liu G, Kee BB, Chun L (2006) A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis. Comput Methods Appl Mech Eng 195(37–40):4843–4861. https://doi.org/10.1007/s00466-006-0145-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu HY, Gao XW, Xu BB (2019) An implicit free element method for simulation of compressible flow. Comput Fluids 192:104276. https://doi.org/10.1016/j.compfluid.2019.104276

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu X, Liu GR, Tai K, Lam KY (2005) Radial point interpolation collocation method (RPICM) for partial differential equations. Comput Math Appl 50(8):1425–1442. https://doi.org/10.1016/j.camwa.2005.02.019

    Article  MathSciNet  MATH  Google Scholar 

  34. Madych W, Nelson S (1992) Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J Approx Theory 70:94–114. https://doi.org/10.1016/0021-9045(92)90058-V

    Article  MathSciNet  MATH  Google Scholar 

  35. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318. https://doi.org/10.1007/BF00364252

    Article  MathSciNet  MATH  Google Scholar 

  36. Perazzo F, Lohner R, Perez-Pozo L (2008) Adaptive methodology for meshless finite point method. Adv Eng Softw 39(3):156–166. https://doi.org/10.1016/j.advengsoft.2007.02.007

    Article  Google Scholar 

  37. Repka M, Sladek V, Sladek J (2019) Numerical study of size effects in micro/nano plates by moving finite elements. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.01.010

    Article  MATH  Google Scholar 

  38. Sadat H, Dubus N, Gbahoue L, Sophy T (2006) On the solution of heterogeneous heat conduction problems by a diffuse approximation meshless method. Numer Heat Transf Part B Fundam 50(6):491–498. https://doi.org/10.1080/10407790600710184

    Article  Google Scholar 

  39. Saeedpanah I, Jabbari E (2010) Local Heaviside-weighted LRPIM meshless method and its application to two-dimensional potential flows. Int J Numer Methods Fluids 59(5):475–493. https://doi.org/10.1002/fld.1810

    Article  MathSciNet  MATH  Google Scholar 

  40. Safarpoor M, Shirzadi A (2019) Numerical investigation based on radial basis function-finite-difference (RBF-FD) method for solving the Stoke–Darcy equations. Eng Comput. https://doi.org/10.1007/s00366-019-00863-5

    Article  MATH  Google Scholar 

  41. Safarpoor M, Takhtabnoos F, Shirzadi A (2019) A localized RBF-MLPG method and its application to elliptic PDEs. Eng Comput. https://doi.org/10.1007/s00366-018-00692-y

    Article  MATH  Google Scholar 

  42. Shankar V (2016) The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD. J Comput Phys. https://doi.org/10.1016/j.jcp.2017.04.037

    Article  MATH  Google Scholar 

  43. Wang L (2017) Radial basis functions methods for boundary value problems: performance comparison. Eng Anal Bound Elem 84:191–205. https://doi.org/10.1016/j.enganabound.2017.08.019

    Article  MathSciNet  MATH  Google Scholar 

  44. Wen P, Hon Y, Li M, Korakianitis T (2013) Finite integration method for partial differential equations. Appl Math Model 37(24):10092–10106. https://doi.org/10.1016/j.apm.2013.05.054

    Article  MathSciNet  MATH  Google Scholar 

  45. Wen PH, Aliabadi MH (2012) A hybrid finite difference and moving least square method for elasticity problems. Eng Anal Bound Elem 36(4):600–605. https://doi.org/10.1016/j.enganabound.2011.10.002

    Article  MathSciNet  MATH  Google Scholar 

  46. Wen PH, Cao P, Korakianitis T (2014) Finite block method in elasticity. Eng Anal Bound Elem 46:116–125. https://doi.org/10.1016/j.enganabound.2014.05.006

    Article  MathSciNet  MATH  Google Scholar 

  47. Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272. https://doi.org/10.1006/jath.1997.3137

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang J, Zheng J (2013) Intervention-point principle of meshless method. Chin Sci Bull 58(4):478–485. https://doi.org/10.1007/s11434-012-5471-x

    Article  MathSciNet  Google Scholar 

  49. Zhang J, Zhou G, Gong S, Wang S (2017) Transient heat transfer analysis of anisotropic material by using element-free Galerkin method. Int Commun Heat Mass Transf 84:134–143. https://doi.org/10.1016/j.icheatmasstransfer.2017.04.003

    Article  Google Scholar 

  50. Zvan R, Forsyth PA, Vetzal KR (1997) Penalty methods for American options with stochastic volatility. J Comput Appl Math 91(2):199–218. https://doi.org/10.1016/s0377-0427(98)00037-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wei Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, BB., Gao, XW. & Cui, M. An efficient and accurate hybrid weak-form meshless method for transient nonlinear heterogeneous heat conduction problems. Engineering with Computers 38, 969–984 (2022). https://doi.org/10.1007/s00366-020-01050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01050-7

Keywords

Navigation