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Abstract In this paper, maximum likelihood and Bayesian approaches have been
used to obtain the estimation of P(X < Y ) based on a set of upper record values from
Kumaraswamy distribution. The existence and uniqueness of the maximum likelihood
estimates of the Kumaraswamy distribution parameters are obtained. Confidence inter-
vals, exact and approximate, as well as Bayesian credible intervals are constructed.
Bayes estimators have been developed under symmetric (squared error) and asymmet-
ric (LINEX) loss functions using the conjugate and non informative prior distributions.
The approximation forms of Lindley (Trabajos de Estadistica 3:281–288, 1980) and
Tierney and Kadane (J Am Stat Assoc 81:82–86, 1986) are used for the Bayesian cases.
Monte Carlo simulations are performed to compare the different proposed methods.

Keywords Kumaraswamy distribution · Stres-strength model · Record values ·
Bayes estimation · Symmetric and asymmetric loss functions
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1 Introduction

Let X and Y be independent random variables, the quantity of R = P(X < Y ) is
commonly referred as stress-strength parameter or reliability. In the simplest terms
this can be described as an assessment of reliability of a component in terms of random
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variables X representing stress experienced by the component and Y representing the
strength of the component available to overcome the stress. If the stress exceeds the
strength, i.e. X > Y , then the component will fail. The main idea was introduced
by Birnbaum (1956) and developed by Birnbaum and McCarty (1958). The problem
of estimating of R on random samples has been extensively studied under various
distributional assumptions on X and Y . A comprehensive account of this topic is
presented by Kotz et al. (2003). It is provided an excellent review of the development
of the stress-strength under classical and Bayesian point of views up to the year
2003. For most recent results on the topic see Kundu and Gupta (2005), Mokhlis
(2005), Baklizi (2008), Rezaei et al. (2010), Nadar et al. (2012) and the references
therein.

Record values arise naturally many real life applications involving data relating to
meteorology, hydrology, sports and life-tests. In industry and reliability studies, many
products may fail under stress. For example, a wooden beam breaks when sufficient
perpendicular force is applied to it, an electronic component ceases to function in an
environment of too high temperature, and a battery dies under the stress of time. But
the precise breaking stress or failure point varies even among identical items. Hence,
in such experiments, measurements may be made sequentially and only values smaller
(or larger) than all previous ones are recorded. Data of this type are called “Record
Data” or “Records”. Thus, the number of measurements made is considerably smaller
than the complete sample size. This “measurement saving” can be important when the
measurements of these experiments are costly if the entire sample was destroyed. For
more examples, see Gulati and Padgett (1994).

Let X1, X2, . . . be a sequence of independent and identically distributed (iid) ran-
dom variables with common cumulative distribution function (cdf) F(x; θ) and prob-
ability density function (pdf) f (x; θ), where θ ∈ � could be a vector parameter and
� is the parameter space. An observation X j is called an upper record value if it
exceeds that of than all previous observations. Thus, X j is an upper record value if
X j > Xi for all i < j . The record time sequence {Tn, n ≥ 1} , at which the records
appear, is defined as: Tn = min

{
j : j > Tn−1, X j > XTn−1

}
, n > 1, and T1 = 1

with probability 1. By definition X1 is an upper, as well as a lower, record value. Then
the sequence Rn = XTn , n ≥ 1 defines a sequence of upper record values. We can give
an analogous definition for the lower record values. For more details and references,
see Ahsanullah (1995), Arnold et al. (1998) and Nevzorov (2001).

The theory of record values have been extensively studied in the literature. It was
first introduced by Chandler (1952). Feller (1966) gave some examples of record
values with respect to gambling problems. In recent years there has been a growing
interest in the study of inference problems associated with record data. When the
underlying distribution is generalized exponential distribution, Bayes and empirical
Bayes estimators of the parameter were derived by Jaheen (2004) based on record
values. Ahmadi et al. (2006) considered Bayesian estimation for the two parameters
of some life distributions, including exponential, Weibull, Pareto and Burr Type XII,
based on upper record values. Statistical inference based on record values from the
two parameter Pareto distribution was studied by Raqab et al. (2007). Baklizi (2008)
studied likelihood and Bayesian estimation of the stress- strength reliability based on
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lower record values from generalized exponential distribution. Statistical analysis of
record values from the Kumaraswamy distribution was done by Nadar et al. (2013).

Ahmadi and Arghami (2001) compared the Fisher information contained in a set
of n upper (lower) record values with the Fisher information contained a random
sample which consists of n iid observations from the original distribution. They showed
that the information contained in the first n record values is greater than that of n
iid observations for some families of distributions. Moreover, the comparison of the
Shannon information was considered by Madadi and Tata (2011) based on records
and random samples.

A random variable X said to have a Kumaraswamy distribution, denoted by X ∼
K um(a, b), if its cdf is

F(x; a, b) = 1 − (1 − xa)b, 0 < x < 1, (1)

and hence the pdf is given by

f (x; a, b) = abxa−1(1 − xa)b−1, 0 < x < 1, (2)

where a > 0 and b > 0 are the shape parameters. It is known that X is Kumaraswamy
then − ln X is the two parameter generalized exponential distribution. Kumaraswamy
(1980) developed a more general pdf for double bounded random process with
hydrological applications, which is known as Kumaraswamy distribution. Nadara-
jah (2008) has pointed out that many papers in the hydrological literature have used
Kumaraswamy’s distribution because it is deemed as a “better alternative” to the beta
distribution, see Koutsoyiannis and Xanthopoulos (1989). Jones (2009) explored the
background and genesis of the Kumaraswamy distribution, and more importantly,
made clear some similarities and differences between the beta and Kumaraswamy
distributions. Kumaraswamy distribution has some advantages over the beta distri-
bution in terms of tractability. For example, its cdf has a closed form, the quan-
tile functions are easily obtainable and one can easily generate random variables
from Kumaraswamy distribution. This distribution has been studied many authors
in hydrology and related areas, see Sundar and Subbiah (1989), Fletcher and Pon-
namblam (1996), Seifi et al. (2000), Ponnambalam et al. (2001), and Ganji et al.
(2006).

For most statisticians, interested mainly in controlling the amount of variability, it
has become standard practice to consider a squared error (SE) loss function, which is
symmetrical and gives equal weight to overestimation as well as underestimation. It
is well known that the use of symmetric loss functions may be inappropriate in many
circumstances, particularly when positive and negative errors have different conse-
quences. The use of asymmetrical loss function, which associates greater importance
to overestimation or underestimation, can be considered for the estimation of the
parameter. A number of asymmetric loss functions are proposed for use, among these,
one of the most popular asymmetric loss functions is linear-exponential loss function
(LINEX), was introduced by Varian (1975). The LINEX loss function rises approxi-
mately exponentially on one side of zero and approximately linearly on the other side.
The LINEX loss function can be expressed as
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L(θ, δ) = ev(δ−θ) − v(δ − θ) − 1, v �= 0 (3)

where δ is an estimator of θ . The sign and magnitude of v represents the direction and
degree of asymmetry, respectively. If v > 0, the overestimation is more serious than
underestimation, and vice versa. For v close to zero, the LINEX loss is approximately
the SE loss and therefore almost symmetric. It is easily seen that the value of δ(X)

that minimizes Eθ |X [L(θ, δ(X))] in Eq. 3 is

δ̂BL = −1

v
log

(
Eθ |X (e−vθ )

)
, (4)

provided Eθ |X (e−vθ ) exists and is finite. Here Eθ |X (.) denotes the expected value with
respect to the posterior density function of θ given X .

Our aim in this paper is to improve inference procedures for the stress-strength
model when the measurements follow the Kumaraswamy distribution with the first
shape parameters are same based on upper record values. Different estimators of R are
obtained, namely, maximum likelihood estimator (MLE), uniformly minimum vari-
ance unbiased estimator (UMVUE), and Bayesian and empirical Bayesian estimators
with SE and LINEX loss functions corresponding to conjugate and non informative
priors. Moreover, exact, asymptotic and Bayesian credible intervals of R are also
obtained.

The rest of the paper is organized as follows. In Sect. 2, we derive the ML and
Bayesian estimation of R with common first shape parameters. The existence and
uniqueness of the MLEs of the parameters are proved. The asymptotic confidence
interval is obtained. The Tierney and Kadane (1986) approximation is used for the
Bayes estimation of R. It is obtained under the SE and LINEX loss functions for the
conjugate prior case. In Sect. 3, estimation of R is discussed when the first shape para-
meter is known. In this section the MLE and UMVUE of R are derived. The Bayes
estimators of R are obtained by using series expansion and Lindley’s approximation
under the SE and LINEX loss functions for the conjugate and non informative prior
cases. The empirical Bayes estimators of R are also derived by using two different
ways. Moreover, approximate, exact and Bayesian credible intervals of R are con-
structed. In Sect. 4, the different proposed methods have been compared using Monte
Carlo simulations and their results have been reported. Finally, we conclude the paper
in Sect. 5.

2 Estimation of R with common first shape parameter

In this section, we investigate the properties of R = P(X < Y ), when the first shape
parameter a is same for both distributions. MLEs and its existence and uniqueness,
asymptotic distributions and confidence intervals for R are obtained.

2.1 Maximum likelihood estimator of R

Let X ∼ K um(a, b1) and Y ∼ K um(a, b2), where they are independent. Therefore,
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R = P(X < Y ) =
1∫

0

fY (y)P(X < Y | Y = y)dy

=
1∫

0

ab2 ya−1(1 − ya)b2−1
(

1 − (1 − ya)b1
)

dy

= b1

b1 + b2
. (5)

Our interest is in estimating R based on upper record data on both variables.
Let R1, . . . , Rn be the first n upper record values observed from K um(a, b1) and
S1, . . . , Sm be an m upper record values observed from K um(a, b2) independently
from the first sample. The likelihood functions are given by, see Arnold et al. (1998),

l1(b1, a | r) = f (rn; a, b1)

n−1∏

i=1

f (ri ; a, b1)

1 − F(ri ; a, b1)
, −∞ < r1 < · · · < rn < ∞,

and

l2(b2, a | s) = g(sm; a, b2)

m−1∏

j=1

g(s j ; a, b2)

1 − G(s j ; a, b2)
, −∞ < s1 < · · · < sm < ∞,

where r = (r1, . . . , rn), s = (s1, . . . , sm), f and F are the pdf and cdf of X follows
K um(a, b1), respectively and g and G are the pdf and cdf of Y follows K um(a, b2),
respectively. Substituting f, F, g and G in the likelihood functions, we obtain the
likelihood functions

l1(b1, a | r) = anbn
1 h1(r; a)e−b1T1(rn;a),

and

l2(b2, a | s) = ambm
2 h2(s; a)e−b2T2(sm ;a),

where

h1(r; a) =
n∏

i=1

ra−1
i

1 − ra
i

, h2(s; a) =
m∏

j=1

sa−1
j

1 − sa
j
,

T1(rn; a) = − ln
(
1 − ra

n

)
and T2

(
sm; a) = − ln(1 − sa

m

)
.

The joint likelihood and the joint log-likelihood functions are

l(b1, b2, a | r , s) = l1(b1, a | r)l2(b2, a | s),
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and

L(b1, b2, a | r , s) = (n + m) ln a + n ln b1 + m ln b2 + ln h1(r; a)

+ ln h2(s; a) − b1T1(rn; a) − b2T2(sm; a), (6)

respectively. The ML estimators of b1, b2 and a, say b̂1, b̂2 and â respectively, can be
obtained as a solution of

∂L

∂b1
= n

b1
− T1(rn; a) = 0,

∂L

∂b2
= m

b2
− T2(sm; a) = 0,

∂L

∂a
=

⎡

⎣
n+m

a + ∑n
i=1

ln ri
1−ra

i
+ ∑m

j=1
ln s j
1−sa

j
+

(
n

ln(1−ra
n )

)
ra

n ln rn
1−ra

n

+
(

m
ln(1−sa

m )

)
sa
m ln sm
1−sa

m

⎤

⎦ = 0.

Then, we obtain

b̂1 = − n

ln
(
1 − r â

n

) , (7)

b̂2 = − m

ln
(
1 − sâ

m

) , (8)

and â can be obtained as a solution of the non-linear equation

⎡

⎣
n+m

a + ∑n
i=1

ln ri
1−ra

i
+ ∑m

j=1
ln s j
1−sa

j
+

(
n

ln(1−ra
n )

)
ra

n ln rn
1−ra

n

+
(

m
ln(1−sa

m )

)
sa
m ln sm
1−sa

m

⎤

⎦ = 0.

Therefore, â can be obtained as a solution of the non-linear equation of the form
h(a) = a where

h(a) = −(n + m)

⎡

⎣

∑n
i=1

ln ri
1−ra

i
+ ∑m

j=1
ln s j
1−sa

j
+

(
n

ln(1−ra
n )

)
ra

n ln rn
1−ra

n

+
(

m
ln(1−sa

m )

)
sa
m ln sm
1−sa

m

⎤

⎦

−1

. (9)

Since, â is a fixed point solution of the non-linear Eq. 9, its value can be obtained
using an iterative scheme as: h(a( j)) = a( j+1), where a( j) is the j th iterate of â. The
iteration procedure should be stopped when

∣
∣a( j+1) − a( j)

∣
∣ is sufficiently small. After

â is obtained, b̂1 and b̂2 can be obtained from Eqs. 7 and 8, respectively. Therefore,
the MLE of R is given as
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R̂M L E = b̂1

b̂1 + b̂2

. (10)

2.2 Existence and uniqueness of the MLEs

In the following theorem we establish the existence and uniqueness of the MLEs.

Theorem 1 The MLEs of the parameters b1, b2 and a are unique and are given by

b̂1 = − n

ln(1 − r â
n )

, b̂2 = − m

ln(1 − sâ
m)

,

where â is the solution of the non-linear equation:

G(a) =
⎡

⎣
n+m

a + ∑n
i=1

ln ri
1−ra

i
+ ∑m

j=1
ln s j
1−sa

j
+

(
n

ln(1−ra
n )

)
ra

n ln rn
1−ra

n

+
(

m
ln(1−sa

m )

)
sa
m ln sm
1−sa

m

⎤

⎦ = 0.

Proof G(a) can be rewritten as

G(a) = n

a

[
1 + G1(a) + G2(a)

G3(a)

]
+ m

a

[
1 + H1(a) + H2(a)

H3(a)

]
,

where

G1(a) = 1

n

n∑

i=1

ln vi

1 − vi
, G2(a) = 1

n

vn ln vn

1 − vn
, G3(a) = 1

n
ln(1 − vn),

H1(a) = 1

m

m∑

j=1

ln w j

1 − w j
, H2(a) = 1

m

wm ln wm

1 − wm
, H3(a) = 1

m
ln(1 − wm),

vi = ra
i , i = 1, . . . , n and w j = sa

j , j = 1, . . . , m. We investigate the limit of
G(a) as a → 0+ and a → ∞. We obtain that lim

a→0+G(a) = ∞ and lim
a→∞G(a) < 0.

By the intermediate value theorem G(a) has at least one root in (0,∞). If it can be
shown that G

′
(a) < 0 then the proof will be completed. Since ri < rn, 1

1−ra
n

> 1
1−ra

i
,

i = 1, . . . , n − 1 and s j < sm, 1
1−sa

m
> 1

1−sa
j
, j = 1, . . . , m − 1 for a > 0,

G
′
(a) <

−(n + m)

a2 + nra
n

a2

(
ln ra

n

1 − ra
n

)2
[

1 + ra
n + ln(1 − ra

n )
(
ln(1 − ra

n )
)2

]

+msa
m

a2

(
ln sa

m

1 − sa
m

)2
[

1 + sa
m + ln(1 − sa

m)
(
ln(1 − sa

m)
)2

]
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= −(n + m)

a2 + nvn

a2

(
ln vn

1 − vn

)2 [
1 + vn + ln(1 − vn)

(ln(1 − vn))2

]

+mwm

a2

(
ln wm

1 − wm

)2 [
1 + wm + ln(1 − wm)

(ln(1 − wm))2

]

= n

a2 h(vn) + m

a2 h(wm),

where

h(x) = −1 + x

(
ln x

1 − x

)2 (
1 + x + ln(1 − x)

(ln(1 − x))2

)
, 0 < x < 1.

It can be easily shown that h(x) is a monotone increasing function and h(x) < 0 for
all 0 < x < 1. Hence, G

′
(a) < 0 is obtained.

Finally, we will show that the MLEs of (b1, b2, a) maximizes the log-likelihood
function L(b1, b2, a | r , s). Let H(b1, b2, a) be the Hessian matrix of L(b1, b2, a |
r , s) at (b1, b2, a). We know that if det(H) �= 0 for the critical point (b1, b2, a) and
det(H1) < 0, det(H2) > 0, det(H3) < 0 at (b1, b2, a) then it is a local maximum of

L(b1, b2, a | r , s), where H1 = ∂2 L
∂b2

1
, H2 =

⎛

⎝
∂2 L
∂b2

1

∂2 L
∂b1∂b2

∂2 L
∂b2∂b1

∂2 L
∂b2

2

⎞

⎠ , H3 = H . It can be

easily seen that

det(H1(̂b1, b̂2, â)) = − (
ln(1 − r â

n )
)2

n
< 0,

det(H2(̂b1, b̂2, â)) =
(
ln(1 − r â

n )
)2

n

(
ln(1 − sâ

m)
)2

m
> 0,

and

det(H (̂b1, b̂2, â)) = G
′
(̂a)

(
ln(1 − r â

n )
)2

n

(
ln(1 − sâ

m)
)2

m
< 0.

Since there is no singular point of L(b1, b2, a | r , s) and it has a single critical point
then it is enough to show that the absolute maximum of the function is indeed the local
maximum. Assume that there exist an â0 in the domain in which L∗(̂a0) > L∗(̂a),
where L∗(̂a) = L (̂b1, b̂2, â | r , s) . Since â is the local maximum there should be some
point b in the neighborhood of â such that L∗(b) < L∗(̂a). Let K (a) = L∗(a)−L∗(̂a)

then K (̂a0) > 0, K (b) < 0 and K (̂a) = 0. This implies that b is a local minimum of
the L∗(a), but â is the only critical point so it is a contradiction. Therefore, (̂b1, b̂2, â)

is the absolute maximum of L(b1, b2, a | r , s). 
�
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2.3 Asymptotic distribution and confidence intervals for R

We denote the Fisher information matrix of θ = (b1, b2, a) as I (θ) = (
Ii, j (θ)

)
,

i, j = 1, 2, 3 and

I (θ) = −

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E

(
∂2 L
∂b2

1

)
E

(
∂2 L

∂b1∂b2

)
E

(
∂2 L

∂b1∂a

)

E
(

∂2 L
∂b2∂b1

)
E

(
∂2 L
∂b2

2

)
E

(
∂2 L

∂b2∂a

)

E
(

∂2 L
∂a∂b1

)
E

(
∂2 L

∂a∂b2

)
E

(
∂2 L
∂a2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎝
I11 I12 I13
I21 I22 I23
I31 I32 I33

⎞

⎠ .

The elements of the matrix are obtained as,

I11 = n

b2
1

, I22 = m

b2
2

, I12 = I21 = 0,

I13 = I31 =
1∫

0

ra
n ln rn

1 − ra
n

fRn (rn)drn, I23 = I32 =
1∫

0

sa
m ln sm

1 − sa
m

gSm (sm)dsm,

where fRn (rn) is a pdf of nth upper record value from K um(a, b1) and gSm (sm) is a
pdf of mth upper record value from K um(a, b2),

I33 = n + m

a2 −
n∑

i=1

1∫

0

ra
i

(
ln ri

1 − ra
i

)2

fRi (ri )dri −
m∑

j=1

1∫

0

sa
j

(
ln s j

1 − sa
j

)2

gS j (s j )ds j

+ b1

1∫

0

ra
n

(
ln rn

1 − ra
n

)2

fRn (rn)drn + b2

1∫

0

sa
m

(
ln sm

1 − sa
m

)2

gSm (sm)dsm,

where fRi (ri ) is a pdf of i th upper record value from K um(a, b1) and gS j (s j ) is a pdf
of j th upper record value from K um(a, b2). After making suitable transformations
we obtain

I13 = bn
1

a

∞∑

i=1

1

i

[
1

(b1 + i)n
− 1

(b1 + i − 1)n

]
,

I32 = bm
2

a

∞∑

j=1

1

j

[
1

(b2 + j)m
− 1

(b2 + j − 1)m

]
,

and

I33 = n + m

a2 − 2

a2

⎡

⎣
n∑

i=1

bi
1 Ai (b1) +

m∑

j=1

b j
2 B j (b2) − bn+1

1 An(b1) − bm+1
2 Bm(b2)

⎤

⎦
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where

Ai (b1) =
⎡

⎣
∞∑

k=1

1

k + 1

(
1

(b1 + k − 1)i
− 1

(b1 + k)i

)
⎛

⎝
k∑

q=1

1

q

⎞

⎠

⎤

⎦ ,

and

B j (b2) =
⎡

⎣
∞∑

k=1

1

k + 1

(
1

(b2 + k − 1) j
− 1

(b2 + k) j

)
⎛

⎝
k∑

q=1

1

q

⎞

⎠

⎤

⎦ ,

see Gradshteyn and Ryzhik (1994) (formula 1.516(1), 4.272(6)).

Theorem 2 As n → ∞ and m → ∞ and n
m → p then

[√
n(̂b1 − b1),

√
m (̂b2 − b2),

√
n(̂a − a)

] → N3(0, U−1(b1, b2, a)),

where

U (b1, b2, a) =
⎛

⎝
u11 0 u13
0 u22 u23
u31 u32 u33

⎞

⎠ ,

and

u11 = lim
n,m→∞

1

n
I11, u13 = u31 = lim

n,m→∞
1

n
I13, u22 = lim

n,m→∞
1

m
I22,

u23 = u32 = lim
n,m→∞

√
p

n
I23, u33 = lim

n,m→∞
1

n
I33.

Proof The proof follows from the asymptotic normality of MLE. 
�
Theorem 3 As n → ∞ and m → ∞ and n

m → p then

√
n(R̂M L E − R) → N (0, σ 2) (11)

where

σ 2 = 1

k(b1 + b2)4

[
b2

1 p(u11u33 − u2
13) − 2b1b2

√
pu13u23 + b2

2(u22u33 − u2
23)

]
,

and

k = u11u22u33 − u11u23u32 − u13u22u31.
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Proof
√

n R̂M L E is asymptotically normal with mean
√

n R and variance

σ 2 = lim
n,m→∞n

3∑

j=1

3∑

i=1

∂ R

∂bi

∂ R

∂b j
I −1
i j

where I −1
i j is the (i, j) th element of the inverse of the I (θ), see Rao (1965). Since

∂ R
∂b3

= ∂ R
∂a = 0,

σ 2 = lim
n,m→∞n

[
∂ R

∂b1

∂ R

∂b1
I −1
11 + ∂ R

∂b2

∂ R

∂b1
I −1
21 + ∂ R

∂b1

∂ R

∂b2
I −1
12 + ∂ R

∂b2

∂ R

∂b2
I −1
22

]

= lim
n,m→∞n

[
b2

1(I11 I33 − I 2
13) − 2b1b2 I13 I23 + b2

2(I22 I33 − I 2
23)

(b1 + b2)4(I11 I22 I33 − I11 I 2
23 − I22 I 2

13)

]

When this expression is multiplied by
1

n2m
n2m a suitable form is obtained, considering

n
m → p as n → ∞ and m → ∞, then the desired result is obtained. 
�
Remark 1 Theorem 3 can be used to construct the asymptotic confidence interval of
R. The variance σ 2 needs to be estimated to compute the confidenceinterval of R. The
empirical Fisher information matrix and the MLEs of b1, b2 and a are used to estimate
σ 2 as follows

û11 = 1

b̂2
1

, û22 = 1

b̂2
2

,

û13 = b̂n
1

nâ

∞∑

i=1

1

i

[
1

(̂b1 + i)n
− 1

(̂b1 + i − 1)n

]
,

û23 =
√

p

n

b̂m
2

â

∞∑

j=1

1

j

[
1

(̂b2 + j)m
− 1

(̂b2 + j − 1)m

]
,

û33 = n + m

nâ2 − 2

nâ2

⎡

⎣
n∑

i=1

b̂i
1 Ai (̂b1) +

m∑

j=1

b̂ j
2 B j (̂b2) − b̂n+1

1 An (̂b1)−b̂m+1
2 Bm (̂b2)

⎤

⎦.

2.4 Bayes estimation of R

In this subsection, we investigate the Bayes estimation of R when b1, b2 and a have
independent priors with b1 ∼ Gamma(α1, β1), b2 ∼ Gamma(α2, β2) and a ∼
Gamma(α3, β3). A gamma random variable X with the shape and scale parameters
α > 0 and β > 0, respectively, has a density function

f (x) = βα

	(α)
xα−1e−xβ.
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The joint prior density function for θ = (b1, b2, a) is g(b1, b2, a) = π(b1)π(b2)π(a),

and the joint posterior density function of θ = (b1, b2, a) given (r , s) is given by

π
(
b1, b2, a | r , s

) = l(b1, b2, a | r , s)g(b1, b2, a)
∫ ∞

0

∫ ∞
0

∫ ∞
0 l(b1, b2, a | r , s)g(b1, b2, a)db1db2da

= h1(r; a)h2(s; a)bn+α1−1
1 bm+α2−1

2 an+m+α3−1

	(n + α1)	(m + α2)I0(r , s)
(12)

×e−b1(β1+T1(rn;a))e−b2(β2+T2(sm ;a))e−aβ3 ,

where

I0(r , s) =
∞∫

0

an+m+α3−1h1(r; a)h2(s; a)e−aβ3

(β1 + T1(rn; a))n+α1(β2 + T2(sm; a))m+α2
da. (13)

It is well known that, under SE loss function, the Bayes estimator of any arbitrary
function, say u(b1, b2, a), is the posterior mean of the function and is given by a ratio
of two integrals which may be written as

E
[
u(b1, b2, a) | r , s

] =
∞∫

0

∞∫

0

∞∫

0

u(b1, b2, a)π(b1, b2, a | r , s)db1db2da

=
∫ ∞

0

∫ ∞
0

∫ ∞
0 u(b1,b2,a)l(b1,b2,a|r ,s)g(b1,b2,a)db1db2da∫ ∞

0

∫ ∞
0

∫ ∞
0 l(b1,b2,a|r ,s)g(b1,b2,a)db1db2da

. (14)

The ratio of two integrals Eq. 14 cannot be solved analytically. We may use a numerical
integration method to calculate the integrals or use approximate methods such as
the approximate form due to Lindley (1980) or that of Tierney and Kadane (1986).
Lindley (1980) has proposed approximations for moments that capture the first-order
error terms of the normal approximation. This is generally accurate enough, but, as
Lindley points out, the required evaluation of third derivatives of the posterior can be
rather tedious, especially, in problems with several parameters. Moreover, the error
of Tierney and Kadane’s approximate is of the order O(n−2) while the error in using
Lindley’s approximate form is of the order O(n−1). Therefore, we prefer the Tierney
and Kadane (1986) approximation for our case. The regularity condition required for
using Tierney–Kadane’s form is that the posterior density function should be unimodal.

To show that the posterior density function is unimodal, it suffices to show that the
function Q(b1, b2, a) ≡ ln π

(
b1, b2, a | r , s

)
has the unique mode. The extremum

points of Q(b1, b2, a) are given by

b̃1 = n + α1 − 1

β1 + T1(rn; ã)
, b̃2 = m + α2 − 1

β2 + T2(sm; ã)
,
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and ã is the solution of the non-linear equation:

P(a) =
[

n+m+α3−1
a − n+α1−1

β1+T1(rn;a)

ra
n ln rn
1−ra

n
− m+α2−1

β2+T2(sm ;a)

sa
m ln sm
1−sa

m−β3

]

= 0.

P(a) can be rewritten as

P(a) = 1

a

[
(n + m + α3 − 1) − n+α1−1

β1−ln(1−vn)
vn ln vn
1−vn

− m+α2−1
β2−ln(1−wm )

×wm ln wm
1−wm

]

− β3,

where vn = ra
n and wm = sa

m . It is easily seen that lim
a→0+ P(a) = ∞ and lim

a→∞P(a) < 0.

If it can be shown that P(a) is monotone decreasing for all a then the equation
P(a) = 0 has a unique solution in (0,∞).

P
′
(a) = − 1

a2

⎡

⎢
⎢
⎢
⎣

(n + m + α3 − 1)

+(n + α1 − 1)vn

(
ln vn
1−vn

)2 {
1

β1−ln(1−vn)
− vn

(β1−ln(1−vn))2

}

+(m + α2 − 1)wm

(
ln wm
1−wm

)2 {
1

β2−ln(1−wm )
− wm

(β2−ln(1−wm ))2

}

⎤

⎥
⎥
⎥
⎦

= − 1

a2 [(n + m + α3 − 1) + (n + α1 − 1)h1(vn) + (m + α2 − 1)h1(wm)] ,

where

h1(x) = x

(
ln x

1 − x

)2 {
1

β1 − ln(1 − x)
− x

(β1 − ln(1 − x))2

}
, 0 < x < 1.

Let f1(x) = β1 − ln(1 − x) − x, then f1(0) > 0 and f1(x) is a monotone increasing
function for all 0 < x < 1. It can be easily shown that h1(x) > 0 for all 0 < x < 1, by

noticing h1(x) = x
(

ln x
1−x

)2 (
f1(x)

(β1−ln(1−x))2

)
. Hence, P

′
(a) < 0 is obtained. Now, we

want to show that the function Q(b1, b2, a) is the maximum at the point (̃b1, b̃2, ã).
Let H∗(b1, b2, a) be the Hessian matrix of Q(b1, b2, a). We obtain that

det(H∗
1 (̃b1, b̃2, ã)) = − (β1 − ln(1 − r ã

n ))2

n + α1 − 1
< 0,

det(H∗
2 (̃b1, b̃2, ã)) = (β1 − ln(1 − r ã

n ))2

n + α1 − 1

(β2 − ln(1 − sã
m))2

m + α2 − 1
> 0,

and

det(H∗(̃b1, b̃2, ã)) = P
′
(̃a)

(β1 − ln(1 − r ã
n ))2

n + α1 − 1

(β2 − ln(1 − sã
m))2

m + α2 − 1
< 0.
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Therefore Q(b1, b2, a) has unique mode and so the posterior density function is uni-
modal. Consequently, Tierney and Kadane’s approximation can be applied to our case.

The posterior mean of the u(b1, b2, a), Eq. 14, can be rewritten as

E
[
u(b1, b2, a) | r , s

] =
∫ ∞

0

∫ ∞
0

∫ ∞
0 en�∗(b1,b2,a)db1db2da

∫ ∞
0

∫ ∞
0

∫ ∞
0 en�(b1,b2,a)db1db2da

, (15)

where

�(b1, b2, a) =
[
ln(l(b1, b2, a | r , s)) + ln(g(b1, b2, a))

]

n
, (16)

and

�∗(b1, b2, a) = �(b1, b2, a) + 1

n
ln(u(b1, b2, a)). (17)

Following the Tierney and Kadane (1986), Eq. 15 can be approximated in the form

û BT (b1, b2, a) =
[

det �∗

det �

]1/2

exp
(
n
[
�∗(̃b∗

1, b̃∗
2, ã∗) − �(̃b1, b̃2, ã)

])
, (18)

where (̃b∗
1, b̃∗

2, ã∗) and (̃b1, b̃2, ã) maximize �∗(b1, b2, a) and �(b1, b2, a), respec-
tively, and �∗ and � are the negatives of the inverse Hessians of �∗(b1, b2, a) and
�(b1, b2, a) at (̃b∗

1, b̃∗
2, ã∗) and (̃b1, b̃2, ã), respectively.

In our case, we have

�(b1, b2, a) = 1

n

[
L(b1, b2, a | r , s) + ln C + (α1 − 1) ln b1 + (α2 − 1) ln b2
+(α3 − 1) ln a − b1β1 − b2β2 − aβ3

]
,

where C = β
α1
1 β

α2
2 β

α3
3

	(α1)	(α2)	(α3)
. (̃b1, b̃2, ã) can be obtained by solving the following equa-

tions

�1 = ∂�(b1, b2, a)

∂b1
= 0, �2 = ∂�(b1, b2, a)

∂b2
= 0, �3 = ∂�(b1, b2, a)

∂a
= 0,

and are given by

b̃1 = n + α1 − 1

β1 + T1(rn; ã)
,

b̃2 = m + α2 − 1

β2 + T2(sm; ã)
,
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and ã is the solution of the non-linear equation

n + m + α3 − 1

a
+

n∑

i=1

ln ri

1 − ra
i

+
m∑

j=1

ln s j

1 − sa
j

−
(

n + α1 − 1

β1 + T1(rn; a)

)
ra

n ln rn

1 − ra
n

−
(

m + α2 − 1

β2 + T2(sm; a)

)
sa

m ln sm

1 − sa
m

− β3 = 0.

The fixed point method is applied as in the ML estimation of a. The units of the
Hessian matrix of �(b1, b2, a) are obtained as

�11 = ∂2�(b1, b2, a)

∂b2
1

= 1

n

(

−n + α1 − 1

b2
1

)

, �12 = �21 = ∂2�(b1, b2, a)

∂b1∂b2
= 0,

�13 = �31 = ∂2�(b1, b2, a)

∂b1∂a
= 1

n

(
−ra

n ln rn

1 − ra
n

)
,

�22 = ∂2�(b1, b2, a)

∂b2
2

= 1

n

(

−m + α2 − 1

b2
2

)

,

�23 = �32 = ∂2�(b1, b2, a)

∂b2∂a
= 1

n

(
− sa

m ln sm

1 − sa
m

)
,

�33 = ∂2�(b1, b2, a)

∂a2

= 1

n

⎡

⎢
⎢
⎣

− n+m+α3−1
a2 + ∑n

i=1ra
i

(
ln ri

1−ra
i

)2 +
m∑

j=1
sa

j

(
ln s j
1−sa

j

)2

− b1ra
n

(
ln rn
1−ra

n

)2

−b2sa
m

(
ln sm
1−sa

m

)2

⎤

⎥
⎥
⎦.

Hence,

∑
= −

⎛

⎝
�11 0 �13
0 �22 �23
�13 �23 �33

⎞

⎠

−1

and the determinant of � is evaluated at (̃b1, b̃2, ã).
We get the Bayes estimator of R under the SE loss function when u(b1, b2, a) = R.

Equation 17 takes the form

BS�∗(b1, b2, a) = �(b1, b2, a) + 1

n
ln R.
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The maximum value of the function BS�∗(b1, b2, a), say at (BSb̃∗
1,BS b̃∗

2,BS ã∗), is a
solution of the non-linear equation system

n + α1 − 1

b1
− β1 − T1(rn; a) + b2

b1(b1 + b2)
= 0,

m + α2 − 1

b2
− β2 − T2(sm; a) + 1

b1 + b2
= 0,

and

n + m + α3 − 1

a
+

n∑

i=1

ln ri

1 − ra
i

+
m∑

j=1

ln s j

1 − sa
j

− b1ra
n

ln rn

1 − ra
n

− b2sa
m

ln sm

1 − sa
m

−β3 = 0.

The solution of the system can be obtained by using the fixed point method. We can
compute the Hessian matrix of BS�∗(b1, b2, a) following the same arguments as in
the first case. Therefore, the value of det(BS�

∗) at (BSb̃∗
1,BS b̃∗

2,BS ã∗) is obtained.
The Bayes estimator of R under the SE loss function is obtained by using Eq. 18 and
is given by

R̂BS =
[

detBS �∗

det �

]1/2

exp
(
n
[

BS�
∗(BSb̃∗

1,BS b̃∗
2,BS ã∗) − �(̃b1, b̃2, ã)

])
. (19)

If we choose u(b1, b2, a) = e−vR , we obtain the Bayes estimator of R under LINEX
loss function. Similar to the SE loss function case, we get

BL�∗(b1, b2, a) = �(b1, b2, a) − vR

n
,

from Eq. 17.
The maximum value of the function BL�∗(b1, b2, a), say at (BL b̃∗

1,BL b̃∗
2,BL ã∗),

is a solution of the non-linear equation system

n + α1 − 1

b1
− β1 − T1(rn; a) − vb2

(b1 + b2)2 = 0,

m + α2 − 1

b2
− β2 − T2(sm; a) + vb1

(b1 + b2)2 = 0,

and

n + m + α3 − 1

a
+

n∑

i=1

ln ri

1 − ra
i

+
m∑

j=1

ln s j

1 − sa
j

− b1ra
n

ln rn

1 − ra
n

− b2sa
m

ln sm

1 − sa
m

− β3 = 0.

The Bayes estimator of R under the LINEX loss function is obtained by using Eq. 18
and is given by
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R̂BL =
[

detBL �∗

det �

]1/2

exp
(
n
[

BL�∗(BL b̃∗
1,BL b̃∗

2,BL ã∗) − �(̃b1, b̃2, ã)
])

. (20)

3 Estimation of R when a is known

In this section, we consider the estimation of R when a is known. Without loss of
generality, we assume that a = 1. Therefore, R1, . . . , Rn be a set of upper records from
K um(1, b1) and S1, . . . , Sm be a independent set of upper records from K um(1, b2).

3.1 MLE estimation and confidence intervals of R

Based on the above samples, the MLE of R, say R̂M L E will be

R̂M L E = b̂1

b̂1 + b̂2
= n ln(1 − sm)

n ln(1 − sm) + m ln(1 − rn)
. (21)

In this case the Fisher information matrix of θ = (b1, b2) is given by

I (θ) = −

⎛

⎜
⎜
⎝

E

(
∂2 L
∂b2

1

)
E

(
∂2 L

∂b1∂b2

)

E
(

∂2 L
∂b2∂b1

)
E

(
∂2 L
∂b2

2

)

⎞

⎟
⎟
⎠ =

(
n/b2

1 0
0 m/b2

2

)
.

The MLE estimate of R, R̂M L E is approximately distributed as normal with mean R
and variance

σ 2 =
2∑

j=1

2∑

i=1

∂ R

∂bi

∂ R

∂b j
I −1
i j

where I −1
i j is the (i, j) th element of the inverse of the I (θ), see Rao (1965). Hence

an approximate 100(1 − α)% confidence interval for R can be obtained as

[
R̂M L E − czα/2 R̂M L E (1 − R̂M L E ), R̂M L E + czα/2 R̂M L E (1 − R̂M L E )

]
, (22)

where zα/2 is the upper α
2 th percentile points of a standard normal distribution and

c =
√

1
n + 1

m .

It is easy to see that −2b1 ln(1 − rn) ∼ χ2(2n) and −2b2 ln(1 − sm) ∼ χ2(2m).
Therefore,

F∗ =
(

R

1 − R

)(
1 − R̂M L E

R̂M L E

)
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is an F distributed random variable with (2n, 2m) degrees of freedom. The pdf of
R̂M L E is as follows;

f R̂M L E
(r) = 1

r2 B(m, n)

(
nb1

mb2

)n ( 1−r
r )n−1

(
1 + nb1(1−r)

mb2r

)n+m ,

where 0 < r < 1. The 100(1 − α)% confidence interval for R can be obtained as

⎡

⎣ 1

1 + F2m,2n; α
2

(
1−R̂M L E

R̂M L E

) ,
1

1 + F2m,2n;1− α
2

(
1−R̂M L E

R̂M L E

)

⎤

⎦ , (23)

where F2m,2n; α
2

and F2m,2n;1− α
2

are the lower and upper α
2 th percentile points of a F

distribution with (2m, 2n) degrees of freedom.

3.2 UMVUE of R

The joint pdf of records is

f (b1, b2 | r , s) = h1(r)h2(s)b
n
1bm

2 e−b1T1(rn)e−b2T2(sm ), (24)

where h1(r) = ∏n
i=1

1
1−ri

, h2(s) = ∏m
j=1

1
1−s j

, T1(rn) = − ln(1 − rn) and T2(sm) =
− ln(1 − sm). It is clear that (T1(rn), T2(sm)) is a sufficient statistic for (b1, b2). It
can be shown that it is also a complete sufficient statistic by using Theorem 10-9 in
Arnold (1990). Let us define

φ(R1, S1) =
{

1 if R1 < S1
0 if R1 ≥ S1

.

We have E (φ(R1, S1)) = R so it is an unbiased estimator of R. Let P1 = − ln(1−R1)

and P2 = − ln(1 − S1). Using Rao-Blackwell and Lehmann-Scheffe’s Theorems, see
Arnold (1990) the UMVUE of R, say R̂U , can be obtained as

R̂U = E (φ(P1, P2) | (T1, T2))

=
∫

P2

∫

P1

φ(P1, P2) f (p1, p2 | T1, T2)dp1dp2

=
∫

P2

∫

P1

φ(P1, P2) fP1|T1(p1 | T1) fP2|T2(p2 | T2)dp1dp2,

where (T1, T2) = (T1(rn), T2(sm)), f (p1, p2 | T1, T2) is the conditional pdf of
(P1, P2) given (T1, T2) . Using the joint pdf of (R1, Rn) and (S1, Sm) and after making
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a simple transformation, we obtain the fP1|T1(p1 | T1) and fP2|T2(p2 | T2), and are
given by

fP1|T1(p1 | T1) = (n − 1)
(t1 − p1)

n−2

tn−1
1

, 0 < p1 < t1,

fP2|T2(p2 | T2) = (m − 1)
(t2 − p2)

m−2

tm−1
2

, 0 < p2 < t2.

Therefore,

R̂U =
∫ ∫

P1<P2

fP1|T1(p1 | T1) fP2|T2(p2 | T2)dp1dp2

=
⎧
⎨

⎩

∫ t1
0

∫ t2
p1

(n − 1)(m − 1)
(t1−p1)

n−2

tn−1
1

(t2−p2)
m−2

tm−1
2

dp2dp1 if t2 ≥ t1
∫ t2

0

∫ p2
0 (n − 1)(m − 1)

(t1−p1)
n−2

tn−1
1

(t2−p2)
m−2

tm−1
2

dp2dp1 if t2 < t1

=
{

2 F1(1, 1 − m; n; t1/t2) if t2 ≥ t1
1 −2 F1(1, 1 − n; m; t2/t1) if t2 < t1

, (25)

where 2 F1(., .; .; .) is Gauss hypergeometric function, see Gradshteyn and Ryzhik
(1994)) (formula 3.196(1)).

3.3 Bayesian estimation of R

The Bayes estimators of R with respect to the SE and LINEX loss functions are
obtained for the conjugate and non informative prior distributions.

3.3.1 Conjugate prior distributions

We assume that b1 and b2 have independent gamma priors with the parameters b1 ∼
Gamma(α1, β1), b2 ∼ Gamma(α2, β2). The joint prior density function is obtained
multiplying π(b1) by π(b2), and the joint posterior density function of b1 and b2 given
(r , s) is given by

π
(
b1, b2 | r , s

) = l(b1, b2 | r , s)π(b1)π(b2)∫ ∞
0

∫ ∞
0 l(b1, b2 | r , s)π(b1)π(b2)db1db2

= λ
δ1
1 λ

δ2
2

	(δ1)	(δ2)
bδ1−1

1 bδ2−1
2 e−b1λ1 e−b2λ2 ,

where λ1 = β1 + T1(rn), λ2 = β2 + T2(sm), δ1 = n + α1, δ2 = m + α2 . We can
obtain the posterior pdf of R using the joint posterior density function and is given by

fR(r) = λ
δ1
1 λ

δ2
2

B(δ1, δ2)

r δ1−1(1 − r)δ2−1

(rλ1 + (1 − r)λ2)
δ1+δ2

, 0 < r < 1. (26)
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The Bayes estimator of R, say R̂BS, under the SE loss function is given by

R̂BS =
1∫

0

r fR(r)dr.

After making a suitable transformations and simplifications by using formula 3.197(3)
of Gradshteyn and Ryzhik (1994), we get

R̂BS =
{

c1(
λ1
λ2

)δ1 2 F1(δ1 + δ2, δ1 + 1; δ1 + δ2 + 1; 1 − λ1
λ2

) if λ1 < λ2

c1(
λ2
λ1

)δ2 2 F1(δ1 + δ2, δ2; δ1 + δ2 + 1; 1 − λ2
λ1

) if λ2 ≤ λ1
. (27)

where c1 = δ1
δ1+δ2

. The Bayes estimator of R, say R̂BL , under the LINEX loss function
is given by

R̂BL = −1

v
ln ER(e−vR),

where ER(.) denotes posterior expectation with respect to the posterior density of R.
It can be easily obtained that

E(e−vR) =
1∫

0

e−vr fR(r)dr

=
{

( λ1
λ2

)δ1�1(δ1, δ1 + δ2, δ1 + δ2, 1 − λ1
λ2

,−v) if λ1 < λ2

( λ2
λ1

)δ2 e−v�1(δ2, δ1 + δ2, δ1 + δ2, 1 − λ2
λ1

, v) if λ2 ≤ λ1
,

where �1(., ., ., ., .) is confluent hypergeometric series of two variables, see Grad-
shteyn and Ryzhik (1994) (formula 3.385 and 9.261(1)). Therefore,

R̂BL =
⎧
⎨

⎩

− 1
v

(
c2 + ln

[
�1(δ1, δ1 + δ2, δ1 + δ2, 1 − λ1

λ2
,−v)

])
if λ1 < λ2

− 1
v

(
c3 + ln

[
�1(δ2, δ1 + δ2, δ1 + δ2, 1 − λ2

λ1
, v)

])
if λ2 ≤ λ1

, (28)

where c2 = δ1 ln( λ1
λ2

) and c3 = δ2 ln( λ2
λ1

) − v.

Alternatively, we consider using the approximation of Lindley (1980) and following
the approach of Jaheen (2005), it can be easily seen that the approximate Bayes estimate
of R under the SE and LINEX loss functions, say R̂∗

BS and R̂∗
BL respectively, are

R̂∗
BS = R̃

(
1 + (1 − R̃)2

n + α1 − 1
− R̃(1 − R̃)

m + α2 − 1

)
, (29)
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and

R̂∗
BL = R̃ − 1

v
ln

[
1 + v R̃(1 − R̃)2(v R̃ − 2)

2(n + α1 − 1)
+ v R̃2(1 − R̃)(v − v R̃ + 2)

2(m + α2 − 1)

]
, (30)

where R̃ = b̃1

b̃1+b̃2
, b̃1 = n+α1−1

β1+T1(rn)
and b̃2 = m+α2−1

β2+T2(sm )
.

3.3.2 Non informative prior distributions

We use the Jeffrey’s non informative prior which is given by
√

det I (b1, b2). It is easily
seen that the joint prior density function is

π(b1, b2) ∝ 1

b1b2
.

Therefore, the joint posterior density function of b1 and b2 given (r , s) is given by

π(b1, b2 | r , s) = (T1(rn))
n (T2(sm))m

	(n)	(m)
bn−1

1 bm−1
2 e−b1T1(rn)e−b2T2(sm ),

and the posterior pdf of R is given by

fR(r) = (T1(rn))
n (T2(sm))m

B(n, m)

rn−1(1 − r)m−1

(rT1(rn) + (1 − r)T2(sm))n+m
, 0 < r < 1.

The Bayes estimator of R under the SE and LINEX loss function, say R̂BS and R̂BL

respectively, are

R̂BS =
{

( T1
T2

)n( n
n+m )2 F1(n + m, n + 1; n + m + 1; 1 − T1

T2
) if T1 < T2

( T2
T1

)m( n
n+m )2 F1(n + m, m; n + m + 1; 1 − T2

T1
) if T2 ≤ T1

, (31)

and

R̂BL =
⎧
⎨

⎩

− 1
v

(
c4 + ln

[
�1(n, n + m, n + m, 1 − T1

T2
,−v)

])
if T1 < T2

− 1
v

(
c5 + ln

[
�1(m, n + m, n + m, 1 − T2

T1
, v)

])
if T2 ≤ T1

, (32)

where c4 = n ln( T1
T2

), c5 = m ln( T2
T1

) − v, T1 = T1(rn) and T2 = T2(sm).
Using the non informative prior, based on Lindley’s approximation, the approximate

Bayes estimate of R under the SE and LINEX loss functions, say R̂∗
BS and R̂∗

BL
respectively, are

R̂∗
BS = R̃

(
1 + (1 − R̃)2

n − 1
− R̃(1 − R̃)

m − 1

)
, (33)
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and

R̂∗
BL = R̃ − 1

v
ln

[
1 + v R̃(1 − R̃)2(v R̃ − 2)

2(n − 1)
+ v R̃2(1 − R̃)(v−v R̃ + 2)

2(m−1)

]
, (34)

where R̃ = b̃1

b̃1+b̃2
, b̃1 = n−1

T1(rn)
and b̃2 = m−1

T2(sm )
.

3.4 Empirical Bayes estimation of R

We obtained the Bayes estimator of R using two different ways described in Sect. 3.3.1.
It is clear that these estimators depend on the parameters of the prior distributions of
b1 and b2. However, the Bayes estimators can be obtained independently of the prior
parameters.

Firstly, these parameters could be estimated by means of an empirical Bayes proce-
dure, see Lindley (1969) and Awad and Gharraf (1986). Let R1, . . . , Rn and S1, . . . , Sm

be two independent random samples from K um(1, b1) and K um(1, b2), respectively.
For fixed r , the function l(b1, 1 | r) of b1 can be considered as a gamma density with
parameters (n + 1, T1(rn)). Therefore, it is proposed to estimate the prior parameters
α1 and β1 from the samples as n + 1 and T1(rn), respectively. Similarly, α2 and β2
could be estimated from the samples as m + 1 and T2(sm), respectively. Hence, the
empirical Bayes estimator of R with respect to SE and LINEX loss functions, say
R̂E BS and R̂E BL , respectively, could be given as

R̂E BS=
{

c6c7 2 F1(2n + 2m + 2, 2n + 2; 2n + 2m + 3; c9) if T1 < T2
c6c8 2 F1(2n + 2m + 2, 2m + 1; 2n + 2m + 3; c10) if T2 ≤ T1

, (35)

and

R̂E BL =
⎧
⎨

⎩

− 1
v

(
(2n + 1) ln( T1

T2
) + ln c11

)
if T1 < T2

− 1
v

(
(2m + 1) ln( T2

T1
) − v + ln c12

)
if T2 ≤ T1

. (36)

where c6 = 2n+1
2n+2m+2 , c7 = ( T1

T2
)2n+1, c8 = ( T2

T1
)2m+1, c9 = 1 − T1

T2
, c10 = 1 − T2

T1
,

c11 = �1(2n + 1, 2n + 2m + 2, 2n + 2m + 2, c9,−v) and c12 = �1(2m + 1, 2n +
2m + 2, 2n + 2m + 2, c10, v).

Moreover, the estimation of the parameters αi and βi , i = 1, 2 can be obtained
by using the past estimates of the parameters b1 and b2. Then using these in the
Bayes estimate of R gives us the empirical Bayes estimate of R, see Ahmad et al.
(1997) and Jaheen (2004). When the current sample is observed, suppose that the
past samples Rl,1, . . . , Rl,n, l = 1, . . . , N are available with the past realizations
b1,l , l = 1, . . . , N of the random variable b1. Each sample is supposed to follow the
K um(1, b1) distribution. The MLE of b1,l for a past sample l, l = 1, . . . , N , is given
in Eq. 7 and it can be rewritten as

b̂1,l ≡ zl = n

T1,l(rn)
,
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where T1,l(rn) = − ln(1 − rl,n), l = 1, . . . , N . For a given b1,l , l = 1, . . . , N the
conditional pdf of T1,l(rn), l = 1, . . . , N is Gamma(n, b1,l) and then zl , l = 1, . . . , N
has the inverted gamma pdf in the form

f (zl | b1,l) = (nb1,l)
n

	(n)

1

zn+1
l

e−nb1,l/zl , zl > 0. (37)

Using the prior distribution of b1,l , l = 1, . . . , N and Eq. 37, the marginal pdf of zl ,

l = 1, . . . , N has the inverted beta pdf in the form

f (zl) = nnβ1

B(n, α1)

(β1zl)
α1−1

(n + β1zl)n+α1
, zl > 0. (38)

The moments estimates of the α1 and β1 are obtained by using Eq. 38, and are given
by

α̂1 = s2
1

s2 − s2
1

, β̂1 = s1

s2 − s2
1

, (39)

where

s1 = (n − 1)

nN

N∑

l=1

b̂1,l , s2 = (n − 1)(n − 2)

n2 N

N∑

l=1

b̂2
1,l .

Similarly, the prior parameters α2 and β2 estimated by using the past estimates b̂2,k,

k = 1, . . . , M from the past samples Sk,1, . . . , Sk,m and are given by

α̂2 = s∗2
1

s∗
2 − s∗2

1

, β̂2 = s∗
1

s∗
2 − s∗2

1

, (40)

where

s∗
1 = (m − 1)

m M

M∑

k=1

b̂2,k, s∗
2 = (m − 1)(m − 2)

m2 M

M∑

k=1

b̂ 2
2,k .

Substituting α̂1, β̂1, α̂2 and β̂2 given in Eqs. 39 and 40 into Eqs. 29 and 30 yields the
empirical Bayes estimators of R.

3.5 Bayesian credible intervals for R

The Bayesian credible intervals are obtained by using the posterior distributions of b1
and b2.
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3.5.1 Conjugate prior distributions

Assuming that b1 and b2 are independent, we have obtained in Sect. 3.3.1 that the
posterior distributions of b1 and b2 have gamma distributions with parameters (n +
α1, β1 + T1(rn)) and (m + α2, β2 + T2(sm)), respectively. It can be easily seen that
2(β1 + T1(rn))b1 | r ∼ χ2(2(n + α1)) and 2(β2 + T2(sm))b2 | s ∼ χ2(2(m + α2)).
Therefore,

W = 2(β2 + T2(sm))b2 | s/2(m + α2)

2(β1 + T1(rn))b1 | r/2(n + α1)

is an F distributed random variable with (2(m + α2), 2(n + α1)) degrees of freedom
and the 100(1 − α)% Bayesian credible interval for R can be obtained as

⎡

⎣ 1

1 + C1

(
F2(m+α2),2(n+α1); α

2

) ,
1

1 + C1

(
F2(m+α2),2(n+α1);1− α

2

)

⎤

⎦ (41)

where C1 = (m+α2)(β1+T1(rn))
(n+α1)(β2+T2(sm ))

, F2(m+α2),2(n+α1); α
2

and F2(m+α2),2(n+α1);1− α
2

are the
lower and upper α

2 th percentile points of a F distribution with (2(m +α2), 2(n +α1))

degrees of freedom. This interval depends on the prior parameters.
Moreover, this interval can be obtained independently of these parameters by using

the empirical method given in Sect. 3.4. In this case the posterior distributions of b1 and
b2 have gamma distributions with parameters (2n+1, 2T1(rn)) and (2m+1, 2T2(sm)),
respectively and the 100(1 −α)% Bayesian credible interval for R can be obtained as

⎡

⎣ 1

1 + C2

(
F(4m+2),(4n+2); α

2

) ,
1

1 + C2

(
F(4m+2),(4n+2);1− α

2

)

⎤

⎦ (42)

where C2 = (4m+2)T1(rn)
(4n+2)T2(sm )

, F(4m+2),(4n+2); α
2

and F(4m+2),(4n+2);1− α
2

are the lower and
upper α

2 th percentile points of a F distribution with (4m + 2, 4n + 2) degrees of
freedom.

3.5.2 Non informative prior distributions

Under the assumption of the independency and non informative prior distributions
for b1 and b2 we obtain the posterior distributions of b1 and b2. They have gamma
distributions with parameters (n+, T1(rn)) and (m, T2(sm)), respectively. It is easy
to see that 2T1(rn)b1 | r ∼ χ2(2n) and 2T2(sm)b2 | s ∼ χ2(2m). Therefore, the
100(1 − α)% Bayesian credible interval for R is exactly the same as in Eq. 23.

123



Estimation of R = P(X < Y ) for Kumaraswamy distribution 775

4 Simulation study

In this section, we present the results of simulation study for comparing the risk of dif-
ferent estimators based on Monte Carlo simulations. All computations are performed
at the Gebze Institute of Technology. All the programs are written in Matlab R2007a.

We consider two cases separately to draw inference on R, namely when the common
first shape parameter a is unknown and known. Without loss of generality we take
a = 1 when a is known. In both cases we generate the record values with the sample
sizes; (n, m) = (5, 5), (8, 8), (10, 10), (12, 12) from Kumaraswamy distribution. All
the results are based on 2,500 replications. The estimated risk (ER) of θ , when θ is
estimated by θ̂ , is given by

E R(θ) = 1

K

K∑

i=1

(
θ̂i − θi

)2
,

under the SE loss function. Moreover, the estimated risk of θ under the LINEX loss
function is given by

E R(θ) = 1

K

K∑

i=1

(
ev(θ̂i −θi) − v

(
θ̂i − θi

) − 1
)

.

where K is the number of replication.

Case 1 a is unknown

From the sample, the estimate of a is computed by using the iterative algorithm
which is given in Sect. 2.1. We have used the initial estimate of a be 1 and the iterative
process stops when the difference between the two consecutive iterates are less than
10−6. Once we estimate a, we estimate b1 and b2 using Eqs. 7 and 8, respectively.
Finally, we obtain the MLE of R using Eq. 10. The Bayes estimations under the
SE and LINEX loss functions are obtained by using the Tierney and Kadane (1986)
approximation. The prior parameters (α1, α2, α3, β1, β2, β3) = (8, 10, 5, 4, 5, 5) and
(9, 5, 7, 1, 6, 5) are used to tabulate the estimates in Table 1 when the true value of R
are 0.501731 and 0.908896. Moreover, the average length of approximate confidence
intervals and their coverage probabilities (cp) are computed based on the asymptotic
distribution of R̂M L E and is denoted by L AM L E . The nominal α values is 0.05.

In Table 1, it is observed that as the sample size increases in all the cases the average
ERs of the estimators decrease, as expected. It verifies the consistency properties of all
the estimates. The average length of the approximate confidence intervals also decrease
as the sample size increases while the coverage probability is around 0.95. The ERs
of the MLE and the Bayes estimation of R under the SE and LINEX loss functions
are denoted by E R(R̂M L E ), E R(R̂BS) and E R(R̂BL), respectively. It is observed that
the ER of Bayes estimator is smaller than that of ML estimator. Heuristically, in the
Bayes approach we have extra information or data based on accumulated knowledge
about the parameters as opposed to the MLE approach, therefore the Bayes estimator
to be better than the MLE, in the sense that it has smaller ER.
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Table 1 Estimations of R when a is unknown and the priors (α1, α2, α3, β1, β2, β3) are chosen to be
(8,10,5,4,5,5) and (9,5,7,1,6,5) for the true values of R = 0.501731 and 0.908896, respectively

(n, m) R R̂M L E R̂BS R̂BL C IAM L E cp L AM L E

(5,5) 0.501731 0.505022 0.501740 0.608414 (0.226617,0.783427) 0.942400 0.556810
0.013672 0.007156 0.016118

(8,8) 0.501802 0.505712 0.605696 (0.275885,0.727719) 0.964000 0.451834
0.009306 0.006937 0.015867

(10,10) 0.503607 0.508404 0.603941 (0.300070,0.707145) 0.958400 0.407074
0.007870 0.006655 0.015828

(12,12) 0.500559 0.509592 0.603050 (0.313687,0.687430) 0.967200 0.373742
0.006952 0.006593 0.015653

(5,5) 0.908896 0.874885 0.892723 0.410055 (0.737286,1.012484) 0.887600 0.275197
0.007655 0.001766 0.106927

(8,8) 0.878471 0.888055 0.411905 (0.771516,0.985427) 0.942000 0.213910
0.004302 0.001676 0.106247

(10,10) 0.882239 0.886410 0.412547 (0.789373,0.975104) 0.950800 0.185731
0.003039 0.001604 0.106019

(12,12) 0.885163 0.885177 0.413023 (0.802291,0.968034) 0.959200 0.165743
0.002315 0.001570 0.105845

The first and second rows represent the average estimates and estimated risks for the estimators

Case 2 a is known

In Table 2, the MLE and UMVUE of R, denoted by R̂M L E and R̂U , are obtained
by using the Eqs. 21 and 25 . Moreover, the Bayes estimators of R , denoted by
R̂BS, R̂BL , R̂∗

BS and R̂∗
BL , are obtained by using Eqs. 27, 28, 29 and 30, respectively.

The first two Bayes estimators are based on series expansion and the other two based on
Lindley’s approximation for the conjugate prior distributions. In addition, the empirical
Bayes estimates denoted by R̂E BS and R̂E BL are also obtained by using Eqs. 35 and
36. The prior parameters (α1, α2, β1, β2) = (6, 8, 3, 5) and (10, 6, 1, 8) are used to
tabulate the estimates in Table 2 when the true value of R are 0.548264 and 0.925025.
Furthermore, we obtained the approximate and the exact confidence intervals for R
by using Eqs. 22 and 23. Finally, the Bayesian credible intervals are also obtained by
using Eq. 42. The average length of the interval, denoted by L Bayes , and average length
of exact confidence interval, denoted by L M L E , along with their cp’s are reported in
Table 2.

The average ERs decrease as the sample size increases in all the cases. The Bayes
estimate of R has the smallest ER. The Bayes estimates for series expansion and
Lindley’s methods are very close to each other. From this, we can infer that when the
Bayes estimation can not be obtained in the closed form, the Lindley approximation
is a good alternative. When the true value of R is 0.548264 we have E R(R̂BS) <

E R(R̂E BS) < E R(R̂M L E ) < E R(R̂U ). On the other hand, when the true value
of R is 0.925025 we have E R(R̂BS) < E R(R̂U ) < E R(R̂M L E ) < E R(R̂E BS).

Moreover, it is observed that the average confidence interval lengths decrease as the
sample size increases. When the true value of R are 0.548264 and 0.925025, we have
L M L E < L AM L E and L AM L E < L M L E while the cp is around 0.95. The Bayesian
intervals have the smallest cp and is far from 0.95. Sometimes, the cp for the Bayesian
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interval based on Eq. 41 is not reasonable, because it contains prior parameters. That
is why, they are not reported in the table.

In Table 3, the Bayes estimations of R are also obtained for the non informative
prior case. The MLE, UMVUE, Bayes estimations and confidence intervals of R are
computed for R = 0.25, 0.33, 0.5, 0.7, 0.90, 0.92. The Bayes estimations under
SE and LINEX loss functions are obtained by using both series expansion and Lind-
ley’s methods as in Table 2. Moreover, the average length of approximate and exact
confidence intervals and their cp’s of R are evaluated.

The ERs decrease for all the estimates when the sample size increases, as expected. It
is clear that the Bayes estimates under SE loss function for the non informative prior are
similar to the corresponding MLEs. The Bayes estimates for the Jeffrey’s non informa-
tive prior case are very similar to the corresponding MLEs. More specifically, the Bayes
estimator given in Eq. 33 is very close to the ML estimator after some algebraic oper-
ation in which they have suitable form for comparison. For R = 0.25, 0.33, 0.5, 0.7
the UMVUE has the greatest ER and we have E R(R̂BS) < E R(R̂M L E ) < E R(R̂U ).

For R = 0.90, 0.92, we have E R(R̂U ) < E R(R̂M L E ) < E R(R̂BS). Moreover, the
average lengths of the intervals also decrease as the sample size increases. When
R̂∗

BS < R̂M L E < R , this is the case for bigger values of R such as 0.90, 092, it can
be shown that E R(R̂M L E ) < E R(R̂BS) for n = m. When R = 0.25, 0.90, 0.92,

we have L AM L E < L M L E . On the other hand, when R = 0.33, 0.50, 0.70, we have
L AM L E > L M L E . The cp for exact and approximate is around 0.95.

We provide an algorithm for the empirical Bayes estimation which is considered
in Table 4. The empirical Bayes estimation of R is derived by using the past estimates
of b1 and b2 as follows:

1. b̂1,l , l = 1, . . . , N is generated from Eq. 38 for a given values of α1 and β1.
Then b1,N+1 is generated from the gamma prior density of b1 and T1,N+1(rn) is
generated from the conditional pdf of T1,l(rn) which is Gamma(n, b1,l).

2. Similarly, for the given values of α2 and β2, the past estimates b̂2,k, k = 1, . . . , M
can be generated. Moreover, b2,M+1 and T2,M+1(sm) are generated from their
respective densities.

3. For the current samples (the samples order N +1 and M+1), the MLEs of b1 and b2
are computed from Eqs. 7 and 8 with T1 and T2 being replaced by T1,N+1(rn) and
T2,M+1(sm), respectively. Hence, the MLE of R is obtained. The Bayes estimates
of R is evaluated from Eqs. 29 and 30 for the current samples.

4. The estimates of the prior parameters α1, α2, β1and β2 are computed from Eqs.
39 and 40 by using the past estimates. Substituting these estimates in Eqs. 29 and
30 yields the empirical Bayes estimate of R under SE and LINEX loss functions.

They are denoted by R̂∗
E BS and R̂∗

E BL . The prior parameters (α1, α2, β1, β2) =
(4, 3, 2, 5) and (9, 2, 2, 6) are used to tabulate the estimates in Table 4 when the true
value of R are 0.753370 and 0.926196.

It is observed that the average ERs of the estimators decrease as the sample size
increases in all the cases. The Bayes estimates have the smallest ERs. Moreover,
when the number of repeated past sample sizes (N , M), given in the algorithm are
small the ER of empirical Bayes is worst than that of MLE’s. In particular, when N ,

M ≤ 10, we have E R(R̂∗
BS) < E R(R̂M L E ) < E R(R̂∗

E BS). On the other hand, for
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the larger sample size (N , M) the ER of empirical Bayes is better than that of MLE’s.
In particular, when N , M > 10, we have E R(R̂∗

BS) < E R(R̂∗
E BS) < E R(R̂M L E ).

5 Conclusions

In this paper, we compare different methods of estimations of P(X < Y ) when X
and Y are two independent Kumaraswamy distributions with the common first shape
parameters.

When the first shape parameter is unknown, it is observed that the Bayesian esti-
mators have a smaller ER. And this result does not change for the different values of
the prior parameters. Nominal coverage probabilities are attained for the asymptotic
confidence intervals.

When the first shape parameter is known, we compare the different estimators,
namely MLE, UMVUE with Bayes and empirical Bayes estimators. The Bayesian
estimators of R are obtained by using series expansion and Lindley’s approximation
method for both conjugate and non informative prior cases. Under both of these meth-
ods the ER are quite similar. Furthermore, ER of the empirical Bayes estimators for the
conjugate prior case are better than that of MLE’s when past sample sizes (N , M) are
greater than 10. The different confidence intervals of R, namely approximate, exact
and Bayesian are compared. Even though, the prior parameters are not known it is
observed that the Bayesian interval discussed in Eq. 42 is quite satisfactory.

Kotz et al. (2003) show that MLE, UMVUE, Bayesian estimator as well as confi-
dence interval for R are invariant with respect to a monotone transformation on (X, Y ).
If X is Kumaraswamy then − ln X is the two parameter generalized exponential distri-
bution. Therefore, all the estimators for R, mentioned above, under the Kumaraswamy
distribution is the same as the two parameter generalized exponential distribution.

The MLE, UMVUE, Bayesian estimators of R in random samples depends on all the
observation, but in record case they only depend on the last record value. Moreover, we
considered the non informative case (a is known) when the number of random samples
and the number of record values are taken to be equal as in the work of Ahmadi and
Arghami (2001). In this case, Monte Carlo simulation reveals out that the record case
produces smaller ER for the Bayes estimation of R (when cp’s are similar) for the
large sample sizes.

On the other hand, we may use Theorem 3.1 in Ahmadi and Arghami (2001) to say
that (Fisher) information in record values is no different from that of random samples
case under the assumption of Xi , i = 1, . . . , n and Y j , j = 1, . . . , m distributes
as K um(1, b), and the number of record values are the same as the number of ran-
dom samples. When distribution involves more than one parameters, comparing the
information in records with random samples is a subject of future studies.
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