Skip to main content
Log in

Grain yield reliability analysis with crop water demand uncertainty

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A new method of reliability analysis for crop water production function is presented considering crop water demand uncertainty. The procedure uses an advanced first-order second moment (AFOSM) method in evaluating the crop yield failure probability. To determine the variance and the mean of actual evapotranspiration as the component of interest for AFOSM analysis, an explicit stochastic optimization model for optimal irrigation scheduling is developed based on the first and second-order moment analysis of the soil moisture state variables. As a result of the study, the violation probabilities of crop yield at different levels were computed from AFOSM method. Also using the optimization results and the double bounded density function estimation methodology, the weekly soil moisture density function is derived which can be used as a short term reliability index. The proposed approach does not involve any discretization of system variables. The results of reliability analysis and optimization model compare favorably with those obtained from simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antreich KJ, Graeb HE, Wieser CU (1994) Circuit analysis and optimization driven by worst-case distances. IEEE Trans Comput Aided Des 13:57–71

    Article  Google Scholar 

  • Burges SJ, Lettenmaier DP (1975) Probabilistic methods in stream quality management. Water Resour Bull 11(1):115–130

    CAS  Google Scholar 

  • Clemmens AJ, Bos MG (1990) Statistical methods for irrigation system water delivery performance evaluation. Irrig Drain Syst 4:345–365

    Article  Google Scholar 

  • Fletcher S, Ponnambalam K (1996a) Stochastic control with bounded sample paths: an application to reservoir systems. Stochast Hydraul Hydrol 10:167–186

    Article  Google Scholar 

  • Fletcher SG, Ponnambalam K (1996b) Estimation of the reservoir yield and storage distribution using the moment analysis. J Hydrol 182:259–275

    Article  CAS  Google Scholar 

  • Ganji A, Ponnambalam K, Khalili D, Karamouz M (2005) Optimal stochastic control of the irrigation scheduling: application of constrained state formulation. J Hydrol (in press)

  • Hasofer AM, Lind CN (1974) An exact invariant first-order reliability format. J Eng Mech ASCE 100:111–121

    Google Scholar 

  • Jairaj PG, Vedula S (2003) Modeling reservoir irrigation in uncertain hydrologic environment. J Irrig Drain Eng 129(3):164–172

    Article  Google Scholar 

  • Jensen ME (1986) Water consumption by agricultural plants. In: Kozlowski TT (ed) Water deficit and plant growth. Academic, New York, pp 1–22

    Google Scholar 

  • Kaul JL, Sekhon S (1991) Flexibility and reliability of irrigation systems and their effect on farming—a case of Punjab. Indian J Agric Econ 46(4):587–592

    Google Scholar 

  • Kipkorir EC, Raes D (2002) Transformation of yield response factor into Jensen’s sensitivity index. Irrig Drain Sys 16:47–52

    Article  Google Scholar 

  • Kumaraswamy P (1980) A generalized probability density function for double-bounded random processes. J Hydrol 46:79–88

    Article  Google Scholar 

  • Liu PL, Der Kiureghian A (1986) Optimization algorithms for structural reliability analysis. Technical Report UCB/SESM-86/09, Department of Civil Engineering, Division of Structural Engineering and Structural Mechanics, University of California, Berkeley

  • Loucks DP, Stedinger JR, Haith DA (1981) Water resources planning analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Madsen HO, Krenk S, Lind NC (1986) Methods of structural safety. Prentice-Hall Inc., Englewood Cliff

    Google Scholar 

  • Mailhot A, Villeneuve J-P (2003) Mean-value second-order uncertainty analysis method: application to water quality modeling. Adv Water Res 26:491–499

    Article  CAS  Google Scholar 

  • Makin IW, Goldsmith H, Skutch JC (1991) Ongoing performance assessment—a case study of Kraseio Project, Thailand. Irrig Drain Syst 5:31–42

    Article  Google Scholar 

  • Martin DL, Stegman EC, Fereres E (1990) Irrigation scheduling principles. In: Hoffman GJ, Howell TA, Solomon KH (eds) Management of farm irrigation system. ASAE Monograph, pp 149–175

  • Melchers RE (1987) Structural reliability, analysis and prediction. Ellis Horwood Series in Civil Engineering-Structural Engineering Section, Ellis Horwood

  • Melching CS, Yen BC, Wenzel HG Jr (1990) A reliability estimation in modeling watershed runoff with uncertainties. Water Resour Res 26(10):2275–2286

    Article  Google Scholar 

  • Molden DJ, Gates TK (1990) Performance measures for evaluation of irrigation-water delivery systems. J Irrig Drain Eng 116(6):804–823

    Article  Google Scholar 

  • Perry CJ, Narayanamurthy SG (1998) Farmer response to rationed and uncertain irrigation supplies. IWMI Research Report 24. International Water Management Institute, Colombo

  • Poh-Kok Ng (1988) Irrigation systems performance monitoring and evaluation: reliability, resiliency and vulnerability criteria for assessing the impact of water shortage on rice yield. IIMI Rev 2(1):12–16

    Google Scholar 

  • Rackwitz R, Fiessler B (1978) Structural reliability under combined load sequences. Comput Struct 9:489–494

    Article  Google Scholar 

  • Ramirez JA, Bras RL (1985) Conditional distribution of Neyman-Scott models for storm arrivals and their use in irrigation scheduling. Water Resour Res 21(3):317–330

    Article  Google Scholar 

  • Seckler D, Sampath RK, Raheja SK (1988) An index for measuring the performance of irrigation management systems with an application. Water Resour. Bull., American, Water Resources Association Paper No. 87099

  • Seifi A, Ponnambalam K, Vlach J (1999) Probabilistic design of integrated circuits with correlated input parameters. IEEE Trans Comput Des Integer Circuit Syst 18:1214–1219

    Article  Google Scholar 

  • Strosser P, Rieu T (1997) Analyzing the link between irrigation water supply and agricultural production: example from Pakistan—economic issues in irrigation systems in Pakistan. IIMI Internal report, 10 pp

  • Suresh KR, Mujumdar PP (2004) A fuzzy risk approach for performance evaluation of an irrigation reservoir system. Agric Water Manag 69:159–177

    Article  Google Scholar 

  • Tsakiris GP (1982) A method for applying crop sensitivity factors in irrigation scheduling. Agric Water Manag 5:335–343

    Article  Google Scholar 

  • Yen BC, Cheng S-T, Melching CS (1986) First order reliability analysis. In: Yen BC (ed) Stochastic and risk analysis in hydraulic engineering. Water Resources Publications, Littleton, pp 1–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ponnambalam.

Appendices

Appendix 1: Second-order derivation for sample terms

1.1 Sample term A

The ET is a function of current soil moisture conditions and can be represented as follows:

$${\text{ET}}_{t} = \left\{ {\begin{array}{*{20}l} {0} & {{\theta _{t} \leq \theta _{{pwp}} }} \\ {{\frac{{{\text{ET}}_{{{\rm p}_{t} }} (\theta _{t} - \theta _{{pwp}} )}}{{(1 - p)(\theta _{{{\text{FC}}}} - \theta _{{pwp}} )}}}} & {{\theta _{{pwp}} \leq \theta _{t} < (1 - p)(\theta _{{{\text{FC}}}} - \theta _{{pwp}} )}} \\ {{{\text{ET}}_{{{\rm p}_{t} }} }} & {{\theta _{t} \geq (1 - p)(\theta _{{{\text{FC}}}} - \theta _{{pwp}} )}} \\ \end{array} } \right..$$

Now considered the term

$$E(\theta _{t}1_{{(\theta _{{pwp}} \leq \theta _{t} \leq (1 - p)(\theta_{{\rm FC}} - \theta _{{pwp}}))}} (\theta _{t}))$$

from the second moment expression in actual ET equation. This term can be divided into following three individual parts:

$$\begin{aligned}\, & nZ_{t}E(\theta _{{t - 1}}1_{{(\theta _{{pwp}} \leq \theta _{t} \leq (1 - p)(\theta _{{\rm FC}} - \theta _{{pwp}}))}} (\theta _{t})) + E((\hbox{Ir}_{t} + \hbox{Ra}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - \hbox{ET}_{t}) \\&\quad 1_{{(\theta _{{pwp}} \leq \theta _{t} \leq (1 - p)(\theta _{{\rm FC}} - \theta _{{pwp}}))}} (\theta _{t})) + E{\left({\eta _{t} 1_{{(\theta _{{pwp}} \leq \theta _{t} \leq (1 - p)(\theta _{{\rm FC}} - \theta _{{pwp}}))}} (\theta _{t})} \right)}. \\\end{aligned}$$
(20)

The second-order approximation of two first parts is calculated next and the third part is determined similarly but not shown here.

AI. Using the property of the indicator function, the first term of Eq. 20, AI, can be expressed as follows:

$$nz_{t} {\int\limits_{\theta ^{{\min}}_{{t - 1}}}^{\theta ^{{\max}}_{{t - 1}}} {\,{\int\limits_l^u {f_{{\eta _{t}}} (\eta _{t})}}}}\,\theta _{{t - 1}} f_{\theta_{{t - 1}}} (\theta _{{t - 1}})\,\hbox{d}_{{\eta _{t}}} \hbox{d}_{{\theta _{{t - 1}}}} $$
(21)

\(f_{{\eta _{t}}} (\eta _{t})\) is the probability density function of the random noise term, η t N[0,Var(η t )], for the current work. \(f_{\theta_{t - 1}} (\theta _{{t - 1}})\) is the density function of the soil moisture state variable in the previous period. u=nz t θ max t − (Ir t +Ra t +n(z t zt−1 r − ET t ) − nzt−1 θt−1 and l=nz t θ min t − (Ir t +Ra t +n(z t zt−1 r − ET t ) − nzt−1 θt−1 are the upper and lower limits, respectively. (θt−1) and η t are assumed independent; thus it can be written:

$$nz_{t} {\int\limits_{\theta ^{{\min}}_{{t - 1}}}^{\theta ^{{\max}}_{{t - 1}}} {{\left[ {{\int\limits_l^u {f_{{\eta _{t}}} (\eta _{t}) \hbox{d}_{{\eta _{t}}}}}} \right]}}}\,\theta _{{t - 1}} f_{\theta{t - 1}} (\theta _{{t - 1}})\,\hbox{d}_{{\theta {t - 1}}},$$
(22)

which is the expectation of a function of (θ t−1) and it can be shown as:

$$ = nz_{t} E{\left\{{\theta _{{t - 1}} {\left[ {{\int\limits_l^u {f_{{\eta _{t}}} (\eta _{t})\hbox{d}_{{\eta _{t}}}}}} \right]}} \right\}},$$
(23)

where \(f_{{\eta _{t}}} (\eta _{t})\) is presented as follows:

$$f_{{\eta _{t}}} (\eta _{t}) = \frac{1}{{{\sqrt {2\pi \hbox{Var}(\eta _{t})}}}}\hbox{exp} {\left[ {- \frac{1}{2}{\left({\frac{{(\eta _{t})^{2}}}{{\hbox{Var}(\eta _{t})}}} \right)}} \right]}.$$
(24)

For the current study, the integral in Eq. 23 is represented as follows:

$$\begin{aligned} \, & E\left({nZ_{{t - 1}} \theta _{{t - 1}} \hbox{Pr}\{ nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} (\theta _{{t - 1}}) < \eta _{t}} \right. \\ & \quad \left. { \leq nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} (\theta _{{t - 1}})\} } \right). \\ \end{aligned}$$
(25)
$$nZ_{{t - 1}} E\left({\theta _{{t - 1}} \hbox{Pr}\{ \eta } \right._{t} \left. { \leq - nz_{{t - 1}} (\theta _{{t - 1}})\} } \right)^{{nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t} }}_{{nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t} }}.$$
(26)

The second-order Taylor’s series approximation of the expectation of Eq. 23 is thus given as:

$$\begin{aligned}\,& \left\{ {nz_{{t - 1}} E(\theta _{{t - 1}})\left\{ {\frac{1}{2}\left({{\text{erf}}{\left({\frac{{nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{t} E(\theta _{{t - 1}})}}{{{\sqrt {2{\text{Var}}\,\eta _{t} } }}}} \right)}} \right.} \right.} \right. \\&\quad \left. {\left. { - {\text{erf}}{\left({\frac{{nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{t} E(\theta _{{t - 1}})}}{{{\sqrt {2{\text{Var}}\,\eta _{t} } }}}} \right)}} \right)} \right\} \\&\quad - \hbox{exp} {\left({ - \frac{1}{2}\frac{{(nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} E(\theta _{{t - 1}}))^{2} }}{{{\text{Var}}\,\eta _{t} }}} \right)} \\&\quad \times {\left[ {\frac{{{\left({nz_{{t - 1}} } \right)}^{2} }}{{{\sqrt {2\pi {\text{Var}}\,\eta _{t} } }}}{\left({2 + \frac{{(nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} E(\theta _{{t - 1}}))nz_{{t - 1}} E(\theta _{{t - 1}})}}{{{\text{Var}}\,\eta _{t} }}} \right)}} \right]} \\&\quad \times \frac{{{\text{Var}}(\theta _{{t - 1}})}}{2} + \hbox{exp} {\left({ - \frac{1}{2}\frac{{(nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} E(\theta _{{t - 1}}))^{2} }}{{{\text{Var}}\,\eta _{t} }}} \right)} \\&\quad \times {\left[ {\frac{{{\left({nz_{{t - 1}} } \right)}^{2} }}{{{\sqrt {2\pi {\text{Var}}\,\eta _{t} } }}}{\left({2 + \frac{{(nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} E(\theta _{{t - 1}}))nz_{{t - 1}} E(\theta _{{t - 1}})}}{{{\text{Var}}\,\eta _{t} }}} \right)}} \right]} \\&\quad \times \frac{{{\text{Var}}(\theta _{{t - 1}})}}{2}. \\ \end{aligned}$$
(27)

AII. Using the property of the indicator function and assuming (θt−1) and η t are independent, the second term of the Eq. 20, AII, can be expressed as follows:

$$nz_{t} {\int\limits_{\theta ^{{\min }}_{{t - 1}} }^{\theta ^{{\max }}_{{t - 1}} } {{\left[ {{\int\limits_l^u {\eta _{t} f_{{\eta _{t} }} (\eta _{t}){\text{d}}_{{\eta _{t} }} } }} \right]}} }f_{\theta_{t -1}} (\theta _{{t - 1}}){\text{d}}_{{\theta _{{t - 1}} }},$$
(28)

which is the expectation of a function of (θt−1) and it can be shown as:

$$ = nz_{t} E{\left\{ {{\left[ {{\int\limits_l^u {\eta _{t} f_{{\eta _{t} }} (\eta _{t}){\text{d}}_{{\eta _{t} }} } }} \right]}} \right\}},$$
(29)

where \(f_{{\eta _{t}}} (\eta _{t})\) is presented as follows:

$$f_{{\eta _{t} }} (\eta _{t}) = \frac{1}{{{\sqrt {2\pi {\text{Var}}(\eta _{t})} }}}\hbox{exp} {\left[ { - \frac{1}{2}{\left({\frac{{(\eta _{t})^{2} }}{{{\text{Var}}(\eta _{t})}}} \right)}} \right]}.$$
(30)

The expectation of Eq. 29 is thus given as

$$E{\left\{ { - \frac{{{\left({nz_{{t - 1}} } \right)}{\sqrt {{\text{Var}}\,\eta _{t} } }}}{{{\sqrt {2\pi } }}}\hbox{exp} {\left({ - \frac{1}{2}\frac{{(k - nz_{{t - 1}} \theta _{{t - 1}})^{2} }}{{{\text{Var}}\,\eta _{t} }}} \right)}^{{nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t})}}_{{nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t})}} } \right\}}.$$
(31)

The second-order Taylor’s series approximation of the expectation of Eq. 31 is thus given as:

$$\begin{aligned} & \frac{{{\sqrt {{\text{Var}}\,\eta _{t} } }}}{{{\sqrt {2\pi } }}}\hbox{exp} {\left({ - \frac{1}{2}\frac{{(nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{t} E(\theta _{{t - 1}}))^{2} }}{{{\text{Var}}\,\eta _{t} }}} \right)} \\ &\quad \times {\left[ {1 + \frac{{{\text{Var}}(\theta _{{t - 1}})}}{2}{\left[ {\frac{{ - (nz_{{t - 1}})^{2} }}{{{\text{Var}}\,\eta _{t} }} + {\left({\frac{{nz_{t} \theta ^{{\max }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} E(\theta _{{t - 1}})}}{{{\text{Var}}\,\eta _{t} }}(nz_{{t - 1}})} \right)}^{2} } \right]}} \right]} \\ &\quad - \frac{{{\sqrt {{\text{Var}}\,\eta _{t} } }}}{{{\sqrt {2\pi } }}}\hbox{exp} {\left({ - \frac{1}{2}\frac{{(nz_{t} \theta ^{{\min }}_{t} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{t} E(\theta _{{t - 1}}))^{2} }}{{{\text{Var}}\,\eta _{t} }}} \right)} \\ &\quad \times {\left[ {1 + \frac{{{\text{Var}}(\theta _{{t - 1}})}}{2}{\left[ {\frac{{ - {\left({nz_{{t - 1}} } \right)}^{2} }}{{{\text{Var}}\,\eta _{t} }} + {\left({\frac{{nz_{t} \theta ^{t}_{{\min }} - ({\text{Ir}}_{t} + {\text{Ra}}_{t} + n(z_{t} - z_{{t - 1}})\theta _{r} - {\text{ET}}_{t}) - nz_{{t - 1}} E(\theta _{{t - 1}})}}{{{\text{Var}}\,\eta _{t} }}{\left({nz_{{t - 1}} } \right)}} \right)}^{2} } \right]}} \right]}. \\ \end{aligned}$$
(32)

1.2 Sample term B

Considered the term

$$E({\left({\theta _{{t - 1}}} \right)}^{2}1_{{(\theta _{{pwp}} \leq \theta _{t} \leq (1 - p)(\theta _{{\rm FC}} - \theta _{{pwp}}))}} (\theta _{t}))$$
(33)

from the second moment expression in actual ET equation (see sample term A).

$${\left({nz_{{t - 1}}} \right)}^{2} {\int\limits_{\theta ^{{\min}}_{{t - 1}}}^{\theta ^{{\max}}_{{t - 1}}} {\,{\left[ {\,{\int\limits_l^u {(\theta _{{t - 1}})^{2}\,f_{{\eta _{t}}} (\eta _{t}){\kern 1pt}\,f_{{\theta} _{{t - 1}}} \hbox{d}_{{\eta _{t}}}}} \hbox{d}_{{{\theta _{{t - 1}}}}}} \right]}}}.$$
(34)

Using the property of the indicator function, Eq. 34 can be expressed as

$${\left({nz_{{t - 1}}} \right)}^{2}{\int\limits_{\theta ^{{\min}}_{{t - 1}}}^{\theta ^{{\max}}_{{t - 1}}} {(\theta _{{t - 1}})^{2}\,{\left[ {\,{\int\limits_l^u {f_{{\eta_{t}}}(\eta_{t})\hbox{d}_{{\eta _{t}}}}}} \right]}}}f_{{\theta} _{{t - 1}}} \hbox{d}_{{{\theta _{{t - 1}}}}},$$
(35)

which is the expectation of a function of (θ t−1) and it can be shown as:

$$ = {\left({nz_{{t - 1}} } \right)}^{2} E{\left\{ {{\left({\theta _{{t - 1}} } \right)}^{2} {\left[ {{\int\limits_l^u {f_{{\eta _{t} }} (\eta _{t}){\text{d}}_{{\eta _{t} }} } }} \right]}} \right\}},$$
(36)

where \(f_{{\eta _{t}}} (\eta _{t})\) is presented as follows:

$$f_{{\eta _{t}}} (\eta _{t}) = \frac{1}{{{\sqrt {2\pi \hbox{Var} (\eta _{t})}}}}\hbox{exp} {\left[ {- \frac{1}{2}{\left({\frac{{(\eta _{t})^{2}}}{{\hbox{Var}(\eta _{t})}}} \right)}} \right]}.$$
(37)

For the current study, the integral in Eq. 36 is represented as follows:

$$\begin{aligned}\,& E\left({\left({nZ_{t - 1} \theta _{t - 1} } \right)^2 \hbox{Pr}\{ nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} (\theta _{t - 1}) < \eta_t } \right. \\&\quad \left. { \leq nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} (\theta _{t - 1})\} } \right). \\\end{aligned}$$
(38)
$$\left({nZ_{t - 1} } \right)^2 E\left({\left({\theta _{t - 1} } \right)^2 \hbox{Pr}\{ \eta _t } \right.\left. { \leq k - nz_{t - 1} (\theta _{t - 1})\} } \right)_{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t }^{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t }.$$
(39)

The second-order Taylor’s series approximation of the expectation of Eq. 39 is thus given as:

$$\begin{aligned}\,& \left({nz_{t - 1} } \right)^2 \left({\left({E(\theta _{t - 1})^2 \left\{ {\frac{1}{2}\left({{\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_t E(\theta _{t - 1})}}{{\sqrt {2{\text{Var}}\,\eta _t } }}} \right)} \right.} \right.} \right.} \right. \\& \quad \left. {\left. {\left. { - {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_t E(\theta _{t - 1})}}{{\sqrt {2{\text{Var}}\,\eta _t } }}} \right)} \right)} \right\}} \right) \\& \quad + \left({2\left\{ {\frac{1}{2}\left({{\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_t E(\theta _{t - 1})}}{{\sqrt {2{\text{Var}}\,\eta _t } }}} \right)} \right.} \right.} \right. \\& \quad \left. {\left. { - {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_t E(\theta _{t - 1})}}{{\sqrt {2{\text{Var}}\,\eta _t } }}} \right)} \right)} \right\} \\& \quad + \frac{{ - 4\left({nz_{t - 1} } \right)E(\theta _{t - 1})}}{{\sqrt {2\pi {\text{Var}}\,\eta _t } }}\hbox{exp} \left({ - \frac{1}{2}\frac{{(nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{{\text{Var}}\,\eta _t }}} \right) \\& \quad - \frac{{(nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))\left({nz_{t - 1} E(\theta _{t - 1})} \right)^2 }}{{{\text{Var}}\,\eta _t \sqrt {2\pi {\text{Var}}\,\eta _t } }} \\& \quad \times \hbox{exp} \left({ - \frac{1}{2}\frac{{(nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{{\text{Var}}\,\eta _t }}} \right) \\& \quad - \frac{{ - 4\left({nz_{t - 1} } \right)E(\theta _{t - 1})}}{{\sqrt {2\pi {\text{Var}}\,\eta _t } }}\hbox{exp} \left({ - \frac{1}{2}\frac{{(nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{{\text{Var}}\,\eta _t }}} \right) \\& \quad + \frac{{(nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))\left({nz_{t - 1} E(\theta _{t - 1})} \right)^2 }}{{{\text{Var}}\,\eta _t \sqrt {2\pi {\text{Var}}\,\eta _t } }} \\& \quad \times \hbox{exp} \left. {\left({ - \frac{1}{2}\frac{{(nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{{\text{Var}}\,\eta _t }}} \right)} \right)\frac{{{\text{Var}}(\theta _{t - 1})}}{2}. \\ \end{aligned}$$
(40)

1.3 Sample term C

Considered the term

$$2nz_{{t - 1}} E(\eta _{t} {\left({\theta _{{t - 1}}} \right)} 1_{{(\theta _{{pwp}} \leq \theta _{t} \leq (1 - p)(\theta _{{\rm FC}} - \theta _{{pwp}}))}} (\theta _{t}))$$
(41)

from the second moment expression in actual ET equation (see sample term A). This term is expressed as:

$$2nz_{{t - 1}} {\int\limits_{\theta ^{{\min}}_{{t - 1}}}^{\theta^{{\max}}_{{t - 1}}} {{\left[ {{\int\limits_l^u {(\theta _{{t - 1}})\eta _{t} f_{{\eta _{t}}} (\eta _{t})f_{{\theta} _{{t - 1}}} \hbox{d}_{{\eta _{t}}}}} \hbox{d}_{{\theta _{{t - 1}}}}} \right]}}}.$$
(42)

Using the property of the indicator function, Eq. 42 can be expressed as

$$2nz_{{t - 1}} {\int\limits_{\theta ^{{\min}}_{{t - 1}}}^{\theta ^{{\max}}_{{t - 1}}}{(\theta _{{t - 1}}) {\left[ {{\int\limits_l^u {\eta _{t} f_{{\eta _{t}}}(\eta _{t})\hbox{d}_{{\eta _{t}}}}}} \right]}}}f_{{\theta} _{{t - 1}}} \hbox{d}_{{{\theta _{{t - 1}}}}},$$
(43)

where \(f_{{\eta _{t}}} (\eta _{t})\) is presented as follows:

$$f_{{\eta _{t}}} (\eta _{t}) = \frac{1}{{{\sqrt {2\pi \hbox{Var} (\eta _{t})}}}}\hbox{exp} {\left[ {- \frac{1}{2}{\left({\frac{{(\eta _{t})^{2}}}{{\hbox{Var}(\eta _{t})}}} \right)}} \right]}.$$
(44)

The expectation of Eq. 41 is thus given as

$$2nz_{t - 1} E\left\{ { - \theta _{t - 1} \frac{{\left({nz_{t - 1} } \right)\sqrt {{\text{Var}}\,\eta _t } }}{{\sqrt {2\pi } }}\hbox{exp} \left({ - \frac{1}{2}\frac{{(k - nz_{t - 1} \theta _{t - 1})^2 }}{{{\text{Var}}\,\eta _t }}} \right)_{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t)}^{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t)} } \right\}.$$
(45)

The second-order Taylor’s series approximation of the expectation of Eq. 45 is thus given as:

$$\begin{aligned}\, & \left({\frac{{ - 2nz_{t - 1} E(\theta _{t - 1})\sqrt {{\text{Var}}\,\eta _t } }}{{\sqrt {2\pi } }}} \right.\hbox{exp} \left({ - \frac{{(nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{2{\text{Var}}\,\eta _t }}} \right) \\&\quad + \frac{{{\text{Var}}(\theta _{t - 1})\sqrt {{\text{Var}}\,\eta _t } }}{{2\sqrt {2\pi } }}\hbox{exp} \left({ - \frac{{(nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{2{\text{Var}}\,\eta _t }}} \right) \\&\quad \times \left\{ {2nz_{t - 1} (nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})) - \frac{{(nz_{t - 1})^2 E(\theta _{t - 1})}}{{{\text{Var}}\,\eta _t }}} \right. \\&\quad \left. { + E(\theta _{t - 1})\left({nz_{t - 1} \frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{{\text{Var}}\,\eta _t }}} \right)^2 } \right\} \\&\quad - \frac{{ - 2nz_{t - 1} E(\theta _{t - 1})\sqrt {{\text{Var}}\,\eta _t } }}{{\sqrt {2\pi } }}\hbox{exp} \left({ - \frac{{(nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{2{\text{Var}}\,\eta _t }}} \right) \\&\quad - \frac{{{\text{Var}}(\theta _{t - 1})\sqrt {{\text{Var}}\,\eta _t } }}{{2\sqrt {2\pi } }}\hbox{exp} \left({ - \frac{{(nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}))^2 }}{{2{\text{Var}}\,\eta _t }}} \right) \\&\quad \times \left\{ {2nz_{t - 1} (nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})) - \frac{{(nz_{t - 1})^2 E(\theta _{t - 1})}}{{{\text{Var}}\,\eta _t }}} \right. \\&\quad + \left. {E(\theta _{t - 1})\left({nz_{t - 1} \frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{{\text{Var}}\,\eta _t }}} \right)^2 } \right\} \\\end{aligned}$$

Appendix 2: Soil moisture moment estimation for a specific growing season

The weekly soil moisture continuity equation can be considered as follows for a specific plant in a weekly basis:

$$n(z_{t} \theta _{t} - z_{{t - 1}} \theta _{{t - 1}}) = (\hbox{Ir}_{{t - 1}} + \hbox{Ra}_{{t - 1}} + n(z_{t} - z_{{t - 1}}) \theta _{r}) - \hbox{ET}_{{t - 1}} - L_{{t - 1}} + \eta _{t},$$
(46)

where z t is root zone depth at time t, n is the soil porosity, θ t is volumetric soil moisture at the beginning of a weekly period t, θ t−1 is volumetric soil moisture at end of a weekly period t−1, θ r is remainder soil moisture at the beginning of a weekly period, Irt−1 is long-term (yearly) average of a weekly irrigation depth, Rat−1 is long-term (yearly) average of weekly effective rainfall depth, ETt−1 is long-term (yearly) average of weekly actual evapotranspiration for a specific plant, L t−1 if long-term (yearly) average of weekly leaching fraction, and η t is the random noise term of soil moisture balance equation.

The soil moisture balance Eq. 46 can be represented using the indicator function 1[·](·) as in Eq. 47. For simplicity in demonstrating the methodology, the weekly rainfalls is assumed to be normally and independently distributed in time.

$$\begin{aligned} nz_t \theta _t = & nz_{t - 1} \theta _{t - 1} \\ & + ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t + \eta _t)1_{(\theta _t^{\min },\theta _t^{\max })} (\theta _t) \\ & + \{ nz_t \theta _t^{\min } - nz_{t - 1} \theta _{t - 1} - n(z_t - z_{t - 1})\theta _r \} 1_{(- \infty ,\theta _t^{\min })} (\theta _t) \\ & + \{ nz_t \theta _t^{\max } - nz_{t - 1} \theta _{t - 1} - n(z_t - z_{t - 1})\theta _r \} 1_{(\theta _t^{\max }, + \infty )} (\theta _t), \\\end{aligned}$$
(47)

where θ min t is the minimum allowable soil moisture which is determined based on the specific level of irrigation deficit for a plant. θ max t is the saturated soil moisture, n is the soil porosity and z t is the weekly root zone depth for an specific plant. The indicator function of the random variable θ t (for example \(1_{{(\theta^{{\min}}_{t}, \theta ^{{\max}}_{t})}} (\theta_{t})\)) is itself a random variable such that:

$$1_{(\theta _t^{\min },\theta _t^{\max })} (\theta _t) = \left\{ {\begin{array}{*{20}l} 1 & {\theta _{\min }^t \leq \theta ^t \leq \theta _{\max }^t } \\ 0 & {{\text{otherwise}}} \\ \end{array} } \right.$$
(48)

The expected value of the soil moisture can be determined as follows:

$$\begin{aligned} E(nz_t \theta _t) = & E(nz_{t - 1} \theta _{t - 1}) \\ & + E\left\{ {({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t + \eta _t)1_{(\theta _t^{\min },\theta _t^{\max })} (\theta _t)} \right\} \\ & + E\left\{ {\{ nz_t \theta _t^{\min } - nz_{t - 1} \theta _{t - 1} - n(z_t - z_{t - 1})\theta _r \} 1_{(- \infty ,\theta _t^{\min })} (\theta _t)} \right\} \\ & + E\left\{ {\{ nz_t \theta _t^{\max } - nz_{t - 1} \theta _{t - 1} - n(z_t - z_{t - 1})\theta _r \} 1_{(\theta _t^{\max }, + \infty )} (\theta _t )} \right\}, \\ \end{aligned}$$
(49)

where the second part of the right hand side of Eq. 49 represents the expected soil moisture deficit for an allowable specific level of plant’s yield reduction. To derive the extended from of the Eq. 49, the expected value of the indicator function of soil moisture is determined. According to definition, the expected value of the indicator function of a random variable over any region is the probability of that random variable occurring within that same region. Therefore the expected value is as:

$$\begin{aligned} E\{ 1_{(\theta _t^{\min },\theta _t^{\max })} (\theta _t)\} = & \hbox{Pr}\{ nz_t \theta _t^{\min } \leq nz_t \theta _t \leq nz_t \theta _t^{\max } \} \\ = & \hbox{Pr}\{ nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) \\ & \quad \leq nz_{t - 1} \theta _{t - 1} + \eta _t \\ & \quad \leq nz_t \theta _t^{\max } - ({\text{Ir}}_t + \hbox{Ra}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t)\}, \\ \end{aligned}$$
(50)
$$ E\{ 1_{(\theta _t^{\min },\theta _t^{\max })} (\theta _t)\} = \int\limits_{\theta_{t - 1}^{\min }}^{\theta _{t - 1}^{\max }} {\int\limits_{l}^{u} f_{\eta_{t}} (\eta_t) f_{\theta_{t - 1}} (\theta_{t -1}){\text{d}}_{\eta_{t}} {\text{d}}_{\theta_{t - 1}}},$$
(51)

where \(f_{{\eta _{t}}}\) is the probability density function of the random noise term of the rainfall in the current period t and \(f_{{\theta _{{t - 1}}}}(\theta _{{t - 1}})\) is the density function of the soil moisture state variable in the previous period (t−1). The integral at Eq. 51 can be derived analytically, in terms of θt−1, thus allowing for no loss of generality with respect to the assumed distribution of the zero-mean random variable η t . The outer integration in Eq. 51 is just the expectation definition with respect to the random variable of the soil moisture at the previous period of time and so it can be shown that:

$$\begin{aligned} \, & = E\left({\hbox{Pr}\left\{ {nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} \theta _{t - 1} \leq \eta _t } \right.} \right. \\ & \quad \left. {\left. { \leq nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} \theta _{t - 1} } \right\}} \right). \\ \end{aligned}$$
(52)

Using the Taylor series approximation about point Et−1) we generate approximation for expectation at Eq. 52 as below. The first order approximation gives:

$$\begin{aligned} E\{ 1_{(\theta _t^{\min },\theta _t^{\max })} (\theta _t)\} = & \hbox{Pr}\{ nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}) \leq \eta _t \\ & \leq nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})\}. \\ \end{aligned}$$
(53)

Assuming a normal distribution for the random error term (η t ), Eq. 53 can be represented using the erf(·) as:

$$\begin{aligned} \hbox{Pr} & \left\{ {nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1}) \leq \eta _t } \right. \\ & \left. { \leq nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})} \right\} \\ & \quad = \frac{1}{2}\left\{ {{\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right. \\ & \quad \quad \left.{- {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right\}. \\ \end{aligned}$$
(54)

Therefore, using the same procedure for all terms of Eq. 49 and first order Taylor approximation, the expected value of soil moisture can be determined as follows:

$$\begin{aligned} E(nz_t \theta _t) = & E(nz_{t - 1} \theta _{t - 1}) + \frac{1}{2}\left\{ {{\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right. \\ & \left. { - {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right\} \\ & \times ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) + \left({nz_t \theta _t^{\min } - nz_{t - 1} E(\theta _{t - 1}) - n(z_t - z_{t - 1})\theta _r } \right) \\ & \times \frac{1}{2}\left\{ {1 - {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right\} \\ & + \left({nz_t \theta _t^{\max } - nz_{t - 1} E(\theta _{t - 1}) - n(z_t - z_{t - 1})\theta _r } \right) \\ & \times \frac{1}{2}\left\{ {1 + {\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right\}. \\ \end{aligned}$$
(55)

Same as the expected value, it can be held, the second moment of the soil moisture can be determined using the first order analysis as follows:

$$\begin{aligned} E(nz_t \theta _t)^2 = & E(nz_{t - 1} \theta _{t - 1})^2 + \left\{ {({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t)^2 + {\text{Var}}\,\eta _t } \right. \\ & + \left. {2E\{ (\hbox{Ir}_t + \hbox{Ra}_t + n(z_t - z_{t - 1})\theta _r - \hbox{ET}_t + \eta _t)nz_{t - 1} \theta _{t - 1} \} } \right\} \\ & \times \frac{1}{2}\left\{ {{\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right. \\ & \left. { - {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right\} \\ & + \{ (nz_t \theta _t^{\min })^2 - (nz_{t - 1} E(\theta _{t - 1}))^2 - n^2 (z_t ^2 - z_{t - 1} ^2)\theta _r ^2)\} \\ & \times \frac{1}{2}\left\{ {1 - {\text{erf}}\left({\frac{{nz_t \theta _t^{\min } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right. \\ & + \{ (nz_t \theta _t^{\max })^2 - (nz_{t - 1} E(\theta _{t - 1}))^2 - n^2 (z_t ^2 - z_{t - 1} ^2)\theta _r ^2 \} \\ & \times \frac{1}{2}\left\{ {1 + {\text{erf}}\left({\frac{{nz_t \theta _t^{\max } - ({\text{Ir}}_t + {\text{Ra}}_t + n(z_t - z_{t - 1})\theta _r - {\text{ET}}_t) - nz_{t - 1} E(\theta _{t - 1})}}{{(2{\text{Var}}(\eta _t))^{0.5} }}} \right)} \right\}. \\ \end{aligned}$$
(56)

Appendix 3: First moment of actual ET

The ET is a function of current soil moisture conditions and can be represented as follows:

$${\text{ET}}_t = \left\{{\begin{array}{*{20}l} 0 & {\theta _t \leq \theta _{pwp} } \\ {\frac{{{\text{ET}}_{{\rm p}_t } (\theta _t - \theta _{pwp})}}{{(1 - p)(\theta _{{\text{FC}}} - \theta _{pwp})}}} & {\theta _{pwp} \leq \theta _t < (1 - p)(\theta _{{\text{FC}}} - \theta _{pwp})} \\ {{\text{ET}}_{{\rm p}_t } } & {\theta _t \geq (1 - p)(\theta _{{\text{FC}}} - \theta _{pwp})} \\ \end{array} } \right..$$
(57)

Equation (15a, b) can be represented using the indicator function as follows:

$${\text{ET}}_t = {\text{ET}}_{{\rm p}_t } 1_{(\theta _t \geq (1 - p)(\theta _{\rm FC} - \theta _{pwp}))} (\theta _t) + \frac{{{\text{ET}}_{{\rm p}_t } (\theta _t - \theta _{pwp})}}{{(1 - p)(\theta _{{\text{FC}}} - \theta _{pwp})}}1_{(\theta _{pwp} \leq \theta _t \leq (1 - p)(\theta _{{\text{FC}}} - \theta _{pwp}))} (\theta _t).$$
(58)

Therefore, the expected value of ET t can be considered as follows:

$$E({\text{ET}}_t) = E\left\{ {{\text{ET}}_{{\rm p}_t } 1_{(\theta _t \geq (1 - p)(\theta _{{\text{FC}}} - \theta _{pwp}))} (\theta _t)} \right\} + E\left\{ {\frac{{{\text{ET}}_{{\rm p}_t } (\theta _t - \theta _{pwp})}}{{(1 - p)(\theta _{{\text{FC}}} - \theta _{pwp})}}1_{(\theta _{pwp} \leq \theta _t \leq (1 - p)(\theta _{{\text{FC}}} - \theta _{pwp}))} (\theta _t)} \right\}.$$
(59)

Because the second order approximation of mean actual ET can be extended using a similar procedure for actual ET variance with the same sample terms (as represented in Appendix 1), those procedures are not repeated here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganji, A., Ponnambalam, K., Khalili, D. et al. Grain yield reliability analysis with crop water demand uncertainty. Stoch Environ Res Ris Assess 20, 259–277 (2006). https://doi.org/10.1007/s00477-005-0020-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-005-0020-7

Keywords

Navigation