Skip to main content

Advertisement

Log in

Impacts of carrier capture processes in the thermal quenching of photoluminescence in Al–N co-doped SiC

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High concentrations of aluminum (Al) and nitrogen (N) dopants of 6H SiC have been achieved by a fast sublimation growth process. The Al–N co-doped 6H-SiC layer exhibits a strong light-blue photoluminescence emission at low temperatures due to emissions from DI centers and donor acceptor pairs (DAP). The photoluminescence quenching mechanisms of those emissions are different. The decrease of free carrier capture cross-section as temperature increases according to the cascade capture process causes quenching of the photoluminescence emission form DI centers. Emission from Al–N DAP centers exhibits an exponential quenching with activation energy of (95 ± 10) meV. This is attributed to a competing hole capture by non-radiative defect in a multiphonon emission process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology (Wiley, Singapore, 2014)

    Book  Google Scholar 

  2. S. Kamiyama et al., J. Appl. Phys. 99, 093108 (2006)

    Article  ADS  Google Scholar 

  3. W. Lu, Y. Ou, E.M. Fiordaliso, Y. Iwasa, V. Jokubavicius, M. Syväjärvi, S. Kamiyama, P.M. Petersen, H. Ou, Sci. Rep. 7, 9798 (2017)

    Article  ADS  Google Scholar 

  4. H. Seo, A.L. Falk, P.V. Klimov, K.C. Miao, G. Galli, D.D. Awschalom, Nat. Commun. 7, 1 (2016)

    Google Scholar 

  5. T. Egilsson, J.P. Bergman, I.G. Ivanov, A. Henry, E. Janzén, Phys. Rev. B 59, 1956 (1999)

    Article  ADS  Google Scholar 

  6. T.A.G. Eberlein, R. Jones, S. Öberg, P.R. Briddon, Phys. Rev. B 74, 1 (2006)

    Article  Google Scholar 

  7. A. Fissel, W. Richter, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 78, 2512 (2001)

    Article  ADS  Google Scholar 

  8. M. Lax, Phys. Rev. 119, 1502 (1960)

    Article  ADS  Google Scholar 

  9. A. Alkauskas, Q. Yan, C.G. Van De Walle, Phys. Rev. B 90, 1 (2014)

    Article  Google Scholar 

  10. H. Ou, Y. Ou, A. Argyraki, S. Schimmel, M. Kaiser, P. Wellmann, M.K. Linnarsson, V. Jokubavicius, J. Sun, R. Liljedahl, M. Syväjärvi, Eur. Phys. J. B 87, 58 (2014)

    Article  ADS  Google Scholar 

  11. M. Syväjärvi, R. Yakimova, P. Bhattacharya, R. Fornari, H. Kamimura, Encyclopedia-Comprehensive Semiconductor Science and Technology (Elsevier, Amsterdam, 2011)

    Google Scholar 

  12. M. Ikeda, H. Matsunami, T. Tanaka, J. Lumin. 20, 111 (1979)

    Article  Google Scholar 

  13. V.V. Makarov, Sov. Phys. Solid State 13, 1974 (1972)

    Google Scholar 

  14. M. Ikeda, T. Hayakawa, S. Yamagiwa, H. Matsunami, T. Tanaka, J. Appl. Phys. 50, 8215 (1979)

    Article  ADS  Google Scholar 

  15. M.V.B. Pinheiro, E. Rauls, U. Gerstmann, S. Greulich-Weber, H. Overhof, J.M. Spaeth, Phys. Rev. B 70, 1 (2004)

    Article  Google Scholar 

  16. E. Rauls, U. Gerstmann, M.V.B. Pinheiro, S. Greulich-Weber, J.M. Spaeth, Mater. Sci. Forum 483–485, 465 (2005)

    Article  Google Scholar 

  17. M. Ikeda, H. Matsunami, T. Tanaka, Jpn. J. Appl. Phys. 19, 1201 (1980)

    Article  ADS  Google Scholar 

  18. W. Suttrop, G. Pensl, P. Lanig, Appl. Phys. A Solids Surfaces 51, 231 (1990)

    Article  ADS  Google Scholar 

  19. P. Norton, T. Braggins, H. Levinstein, Phys. Rev. Lett. 30, 488 (1973)

    Article  ADS  Google Scholar 

  20. V.N. Abakumov, V.I. Perel', I.N. Yassievich, Sov. Phys. Semicond. 1, 12 (1978)

    Google Scholar 

  21. L. Storasta, F.H.C. Carlsson, S.G. Sridhara, J.P. Bergman, A. Henry, T. Egilsson, A. Hallén, E. Janzén, Appl. Phys. Lett. 78, 46 (2001)

    Article  ADS  Google Scholar 

  22. V.N. Abakumov, V.I. Perel, I.N. Yassievich, Sov. Phys. JETP 45, 354 (1977)

    ADS  Google Scholar 

  23. A.J. Suzuki, Electrochem. Soc. 124, 241 (1977)

    Article  Google Scholar 

  24. M. Ikeda, H. Matsunami, T. Tanaka, Phys. Rev. B 22, 2842 (1980)

    Article  ADS  Google Scholar 

  25. D.V. Lang, C.H. Henry, Phys. Rev. Lett. 35, 1525 (1975)

    Article  ADS  Google Scholar 

  26. L. Shi, L.W. Wang, Phys. Rev. Lett. 109, 1 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by Innovation Fund Denmark (No. 4106-00018B) and Independent Research Fund Denmark (No. 8022-00294B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarekegne, A.T., Norrman, K., Jokubavicius, V. et al. Impacts of carrier capture processes in the thermal quenching of photoluminescence in Al–N co-doped SiC. Appl. Phys. B 125, 172 (2019). https://doi.org/10.1007/s00340-019-7279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7279-8

Navigation