Skip to main content
Log in

Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We reconstruct the optical response of nanostructures of increasing complexity by fitting interferometric time-resolved photoemission electron microscopy (PEEM) data from an ultrashort (21 fs) laser excitation source with different harmonic oscillator-based models. Due to its high spatial resolution of ~40 nm, PEEM is a true near-field imaging system and enables in normal incidence mode a mapping of plasmon polaritons and an intuitive interpretation of the plasmonic behaviour. Using an actively stabilized Mach–Zehnder interferometer, we record two-pulse correlation signals with 50 as time resolution that contain information about the temporal plasmon polariton evolution. Spectral amplitude and phase of excited plasmon polaritons are extracted from the recorded phase-resolved interferometric two-pulse correlation traces. We show that the optical response of a plasmon polariton generated at a gold nanoparticle can be reconstructed from the interferometric two-pulse correlation signal using a single harmonic oscillator model. In contrast, for a corrugated silver surface, a system with increased plasmonic complexity, in general an unambiguous reconstruction of the local optical response based on coupled and uncoupled harmonic oscillators, fails. Whereas for certain local responses different models can be discriminated, this is impossible for other positions. Multidimensional spectroscopy offers a possibility to overcome this limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science), vol. 25 (Springer, Berlin, 1995)

    Book  Google Scholar 

  2. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  3. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  4. A. Anderson, K.S. Deryckx, X.G. Xu, G. Steinmeyer, M.B. Raschke, NanoLett 10, 2519 (2010)

    Article  ADS  Google Scholar 

  5. D. Bayer, C. Wiemann, O. Gaier, M. Bauer, M. Aeschlimann, J. Nanomater. 2008, 249514 (2008)

    Article  Google Scholar 

  6. T. Utikal, M.I. Stockman, A.P. Heberle, M. Lippitz, H. Giessen, Phys. Rev. Lett. 104, 113903 (2010)

    Article  ADS  Google Scholar 

  7. N.K. Gradya, N.J. Halasa, P. Nordlander, Chem. Phys. Lett. 399(1–3), 167–171 (2004)

    Article  ADS  Google Scholar 

  8. M. Merschdorf, C. Kennerknecht, W. Pfeiffer, Phys. Rev. B 70, 193401 (2004)

    Article  ADS  Google Scholar 

  9. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, Boston, 2002)

    Google Scholar 

  10. C. Iaconis, I.A. Walmsley, Opt. Lett. 23(10), 792–794 (1998)

    Article  ADS  Google Scholar 

  11. C.A. Schmuttenmaer, M. Aeschlimann, H.E. Elsayed-Ali, R.J.D. Miller, D.A. Mantell, J. Cao, Y. Gao, Phys. Rev. B 50, 8957 (1994)

    Article  ADS  Google Scholar 

  12. T. Hertel, E. Knoesel, M. Wolf, G. Ertl, Phys. Rev. Lett. 76, 535 (1996)

    Article  ADS  Google Scholar 

  13. H. Petek, S. Ogawa, Prog. Surf. Sci. 56, 239 (1997)

    Article  ADS  Google Scholar 

  14. P.M. Echenique, R. Berndt, E.V. Chulkov, Th Fauster, A. Goldmann, U. Höfer, Surf. Sci. Rep. 52, 219–317 (2004)

    Article  ADS  Google Scholar 

  15. A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, H.K. Kim, Nano Lett. 5, 1123 (2005)

    Article  ADS  Google Scholar 

  16. M. Bauer, A. Marienfeld, M. Aeschlimann, Prog. Surf. Sci. 90, 319 (2015)

    Article  ADS  Google Scholar 

  17. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, G. Gerber, Phys. Rev. Lett. 85, 2921 (2000)

    Article  ADS  Google Scholar 

  18. Y. Nishiyama, K. Imaeda, K. Imura, H. Okamoto, J. Phys. Chem. C (2015). doi:10.1021/acs.jpcc.5b03341

    Google Scholar 

  19. O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, M. Aeschlimann, Appl. Phys. B. 74, 223–227 (2002)

    Article  ADS  Google Scholar 

  20. Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, H. Misawa, Light Sci. Appl. 2, e118 (2013)

    Article  Google Scholar 

  21. M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, D. Voronine, IEEE J. Sel. Top. Quantum Electron. 18, 275 (2012)

    Article  Google Scholar 

  22. Y. Nishiyama, K. Imaeda, K. Imura, H. Okamoto, J. Phys. Chem. C 119, 16215 (2015)

    Article  Google Scholar 

  23. J.-S. Bouillard, S. Vilain, W. Dickson, A.V. Zayats, Opt. Express 18, 16513 (2010)

    Article  ADS  Google Scholar 

  24. L. Novotny, S.J. Stranick, Annu. Rev. Phys. Chem. 57, 303 (2006)

    Article  ADS  Google Scholar 

  25. M.B. Raschke, C. Lienau, Appl. Phys. Lett. 83, 5089 (2003)

    Article  ADS  Google Scholar 

  26. C. Ropers, C.C. Neacsu, T. Elsaesser, M. Albrecht, M.B. Raschke, C. Lienau, Nano Lett. 7, 2784 (2007)

    Article  ADS  Google Scholar 

  27. M. Kociak, O. Stéphan, Chem. Soc. Rev. 43, 3865 (2014)

    Article  Google Scholar 

  28. A. Losquin, M. Kociak, ACS Photonics 2, 1619 (2015)

    Article  Google Scholar 

  29. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Nano Lett. 12, 5780 (2012)

    Article  ADS  Google Scholar 

  30. A. Losquin, S. Camelio, D. Rossouw, M. Besbes, F. Pailloux, D. Babonneau, G.A. Botton, J.-J. Greffet, O. Stéphan, M. Kociak, Phys. Rev. B 88, 115427 (2013)

    Article  ADS  Google Scholar 

  31. A. Feist, K.E. Echternkamp, J. Schauss, S.V. Yalunin, S. Schäfer, C. Ropers, Nature 521, 200 (2015)

    Article  ADS  Google Scholar 

  32. P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, F.M. zu Heringdorf, Plasmonics 9(6), 1401–1407 (2014)

    Article  Google Scholar 

  33. N. Fischer, S. Schuppler, Th Fauster, W. Steinmann, Surf. Sci. 314, 89 (1994)

    Article  ADS  Google Scholar 

  34. S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 44, 247 (1956)

    MathSciNet  Google Scholar 

  35. M.U. Wehner, M.H. Ulm, M. Wegener, Opt. Lett. 22, 1455 (1997)

    Article  ADS  Google Scholar 

  36. J.H. Bechtel, W.L. Smith, N. Bloembergen, Phys. Rev. B 15, 4557 (1977)

    Article  ADS  Google Scholar 

  37. J.P. Girardeau-Montaut, C. Girardeau-Montaut, Phys. Rev. B 51, 13560 (1995)

    Article  ADS  Google Scholar 

  38. A. Gloskovskii, D. Valdaitsev, S.A. Nepijko, G. Schönhense, B. Rethfeld, Surf. Sci. 601, 4706 (2007)

    Article  ADS  Google Scholar 

  39. M.J. Weida, S. Ogawa, H. Nagano, H. Petek, Appl. Phys. A Mater. Sci. Process. 71, 553 (2000)

    Article  ADS  Google Scholar 

  40. M. Merschdorf, Femtodynamics in Nanoparticles—The Short Lives of Excited Electrons in Silver (Dissertation, University of Würzburg, 2002)

  41. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  42. C. Langhammer, B. Kasemo, I. Zorić, J. Chem. Phys. 126, 194702 (2007)

    Article  ADS  Google Scholar 

  43. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, D.V. Voronine, Science 333, 1723–1726 (2011)

    Article  ADS  Google Scholar 

  44. P. Tian, D. Keusters, Y. Suzaki, W.S. Warren, Science 300, 1553–1555 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

All authors of this work are listed in alphabetical order. This work was supported by the German Science Foundation (DFG) within the SPP 1391 (M.A., T.B., W.P.) and the GSC 266 (P.T.). D.K. acknowledges funding from the Irish Research Council and the Marie Curie Actions ELEVATE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Piecuch or Philip Thielen.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Appendix: Details about the general discriminability between model 2.1 and 2.2

Appendix: Details about the general discriminability between model 2.1 and 2.2

In the following, we summarize our results of a more detailed study of the coupled and uncoupled oscillator models. We show that our models 2.1 and 2.2 lead to different total response functions, while these differences should, in principle, be accessible in a nonlinear measurement, under the assumption of physical reasonable model parameters. In matrix notation, and after a Fourier transformation, the system of linear equations (see Eqs. 12, 13) of our model 2.2 (coupled harmonic oscillators) can be written in the local field basis

$$E\left( \omega \right)_{\text{loc}} = \left( {\begin{array}{*{20}c} {E_{1}^{\text{loc}} \left( \omega \right)} \\ {E_{2}^{\text{loc}} \left( \omega \right)} \\ \end{array} } \right)$$
(16)

as

$$L\left( \omega \right)E\left( \omega \right)_{\text{loc}} = E\left( \omega \right)_{\text{L}}$$
(17)

where

$$L\left( \omega \right) = \left( {\begin{array}{*{20}l} { - \omega^{2} + 2i\gamma_{1} \omega + \omega_{1}^{2} } & \kappa \\ \kappa & { - \omega^{2} + 2i\gamma_{2} \omega + \omega_{2}^{2} } \\ \end{array} } \right)$$
(18)

and

$$E\left( \omega \right)_{\text{L}} = \left( {\begin{array}{*{20}l} {E\left( \omega \right)_{\text{laser}} } \hfill \\ 0 \hfill \\ \end{array} } \right).$$
(19)

Now, the modes of a system of two coupled oscillators can be transformed into a system of two uncoupled ones. That is, there is a matrix U with

$$U\left( \omega \right)Q\left( \omega \right) = E\left( \omega \right)_{\text{loc}} ,$$
(20)

where the normal modes Q are the solutions of the equation

$$\underbrace {{U\left( \omega \right)^{ - 1} L\left( \omega \right) U\left( \omega \right)}}_{N\left( \omega \right)} Q(\omega )= U\left( \omega \right)^{ - 1} E\left( \omega \right)_{L} .$$
(21)

The matrix \(N = U^{ - 1} L U\) is a diagonal matrix, such that Q describes the modes of an uncoupled oscillator system. The response functions \(q_{1}\) and q 2, corresponding to the normal modes Q, are simply found by matrix inversion

$$\left( {\begin{array}{*{20}l} {q_{1} \left( \omega \right)} & 0 \\ 0 & {q_{2} \left( \omega \right)} \\ \end{array} } \right) = N\left( \omega \right)^{ - 1} ,$$
(22)

while the form of the functions \(q_{1}\) and q 2 is given by Lorentzian oscillators. Given Eq. (21), the solutions Q are

$$Q\left( \omega \right) = N\left( \omega \right)^{ - 1} U\left( \omega \right)^{ - 1} E\left( \omega \right)_{\text{L}} ,$$
(23)

If we then plug Eq. (23) into Eq. (20), we get

$$U\left( \omega \right)N\left( \omega \right)^{ - 1} U\left( \omega \right)^{ - 1} E\left( \omega \right)_{L} = E\left( \omega \right)_{\text{loc}} ,$$
(24)

and together with the definition of the response function in the local basis

$$R\left( \omega \right) = \frac{{E\left( \omega \right)_{\text{loc}} }}{{E\left( \omega \right)_{\text{laser}} }} = \left( {\begin{array}{*{20}c} {R_{1} \left( \omega \right)} \\ {R_{2} \left( \omega \right)} \\ \end{array} } \right),$$
(25)

Equation (24) can be transformed into

$$\left( {\begin{array}{*{20}c} {R_{1} \left( \omega \right)} \\ {R_{2} \left( \omega \right)} \\ \end{array} } \right) = U\left( \omega \right)N\left( \omega \right)^{ - 1} U\left( \omega \right)^{ - 1} \frac{{E\left( \omega \right)_{\text{L}} }}{{E\left( \omega \right)_{\text{laser}} }}$$
(26)

If we now write out the matrix multiplications, we can factor out the response functions \(q_{1}\) and q 2, by using Eq. (22)

$$\left( {\begin{array}{*{20}c} {R_{1} \left( \omega \right)} \\ {R_{2} \left( \omega \right)} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {U_{11} \left( \omega \right)U_{11}^{ - 1} \left( \omega \right)} & {U_{12} \left( \omega \right)U_{21}^{ - 1} \left( \omega \right)} \\ {U_{21} \left( \omega \right)U_{11}^{ - 1} \left( \omega \right)} & {U_{22} \left( \omega \right)U_{21}^{ - 1} \left( \omega \right)} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {q_{1} \left( \omega \right)} \\ {q_{2} \left( \omega \right)} \\ \end{array} } \right).$$
(27)

So, we find the decomposition of the response functions R 1/2 (local basis) into the response functions q 1/2 (normal basis)

$$\begin{aligned} R_{1} \left( \omega \right) & = A_{11} \left( \omega \right)q_{1} \left( \omega \right) + A_{12} \left( \omega \right)q_{2} \left( \omega \right), \\ R_{2} \left( \omega \right) & = A_{21} \left( \omega \right)q_{1} \left( \omega \right) + A_{22} \left( \omega \right)q_{2} \left( \omega \right), \\ \end{aligned}$$
(28)

where we defined the coefficients

$$\begin{aligned} A_{11} \left( \omega \right) & = U_{11} \left( \omega \right)U_{11}^{ - 1} \left( \omega \right), \\ A_{12} \left( \omega \right) & = U_{12} \left( \omega \right)U_{21}^{ - 1} \left( \omega \right), \\ A_{21} \left( \omega \right) & = U_{21} \left( \omega \right)U_{11}^{ - 1} \left( \omega \right) \\ A_{22} \left( \omega \right) & = U_{22} \left( \omega \right)U_{21}^{ - 1} \left( \omega \right). \\ \end{aligned}$$
(29)

The total response functions which enter our model calculations are taken as linear combinations of the individual response functions \(R_{1}\) and R 2 in the local basis (see Eq. 11) with two real coefficients a 1, \(a_{2}\). If we expand the total response function R (in the local basis), with the help of Eq. (28), we get

$$\begin{aligned} R\left( \omega \right) & = a_{1} R_{1} \left( \omega \right) + a_{2} R_{2} \left( \omega \right) \\ & = a_{1} \left[ {A_{11} \left( \omega \right)q_{1} \left( \omega \right) + A_{12} \left( \omega \right)q_{2} \left( \omega \right)} \right] + a_{2} \left[ {A_{21} \left( \omega \right)q_{1} \left( \omega \right) + A_{22} \left( \omega \right)q_{2} \left( \omega \right)} \right]. \\ \end{aligned}$$
(30)

The expansion coefficients are found to be

$$\begin{aligned} A_{11} \left( \omega \right) & = \frac{{ - 2i\gamma_{1} \omega + 2i\gamma_{2} \omega - \omega_{1}^{2} + \omega_{2}^{2} + \sqrt {4\kappa^{2} - \left( { - 2\gamma_{1} \omega + 2\gamma_{2} \omega + i\left( {\omega_{1} - \omega_{2} } \right)\left( {\omega_{1} + \omega_{2} } \right)} \right)^{2} } }}{{2\sqrt {4\kappa^{2} - \left( { - 2\gamma_{1} \omega + 2\gamma_{2} \omega + i\left( {\omega_{1} - \omega_{2} } \right)\left( {\omega_{1} + \omega_{2} } \right)} \right)^{2} } }}, \\ A_{12} \left( \omega \right) & = \frac{{2i\gamma_{1} \omega - 2i\gamma_{2} \omega + \omega_{1}^{2} - \omega_{2}^{2} + \sqrt {4\kappa^{2} - \left( { - 2\gamma_{1} \omega + 2\gamma_{2} \omega + i\left( {\omega_{1} - \omega_{2} } \right)\left( {\omega_{1} + \omega_{2} } \right)} \right)^{2} } }}{{2\sqrt {4\kappa^{2} - \left( { - 2\gamma_{1} \omega + 2\gamma_{2} \omega + i\left( {\omega_{1} - \omega_{2} } \right)\left( {\omega_{1} + \omega_{2} } \right)} \right)^{2} } }}, \\ A_{21} \left( \omega \right) & = - \frac{\kappa }{{\sqrt {4\kappa^{2} - \left( { - 2\gamma_{1} \omega + 2\gamma_{2} \omega + i\left( {\omega_{1} - \omega_{2} } \right)\left( {\omega_{1} + \omega_{2} } \right)} \right)^{2} } }}, \\ A_{22} \left( \omega \right) & = \frac{\kappa }{{\sqrt {4\kappa^{2} - \left( { - 2\gamma_{1} \omega + 2\gamma_{2} \omega + i\left( {\omega_{1} - \omega_{2} } \right)\left( {\omega_{1} + \omega_{2} } \right)} \right)^{2} } }}. \\ \end{aligned}$$
(31)

Now there are two important points to note:

  1. 1.

    The expansion coefficients can be complex-valued numbers.

  2. 2.

    As soon as γ 1 ≠ γ 2, these coefficients become complex-valued functions of \(\omega\), which leads to a unique frequency-dependent relative phase between the modes \(q_{1}\) and q 2.

While these frequency-dependent coefficients have inevitably an effect on the temporal structure of the resulting autocorrelation traces, we can conclude that, comparing model 2.1 and model 2.2, differences should be detectable, and therefore, a discriminability of both models is given.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeschlimann, M., Brixner, T., Fischer, A. et al. Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models. Appl. Phys. B 122, 199 (2016). https://doi.org/10.1007/s00340-016-6471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6471-3

Keywords

Navigation