Skip to main content
Log in

A phase-imaging technique for cyclotron-frequency measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel approach to mass measurements at the 10−9 level for short-lived nuclides with half-lives well below one second is presented. It is based on the projection of the radial ion motion in a Penning trap onto a position-sensitive detector. Compared with the presently employed time-of-flight ion-cyclotron-resonance technique, the novel approach is 25-times faster and provides a 40-fold gain in resolving power. Moreover, it offers a substantially higher sensitivity since just two ions are sufficient to determine the ion’s cyclotron frequency. Systematic effects specific to the technique that can change the measured cyclotron frequency are considered in detail. It is shown that the main factors that limit the maximal accuracy and resolving power of the technique are collisions of the stored ions with residual gas in the trap, the temporal instability of the trapping voltage, the anharmonicities of the trapping potential and the uncertainty introduced by the conversion of the cyclotron to magnetron motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Walker, Nucl. Phys. News 17, 11 (2007)

    Article  Google Scholar 

  2. F.K. Thielemann et al., Prog. in Part. and Nucl. Phys. 66, 346 (2011)

    Article  ADS  Google Scholar 

  3. Y. Oganessian, J. Phys.: Conference Series 337, 012005 (2012)

    ADS  Google Scholar 

  4. K. Heyde, J. Wood, Rev. Mod. Phys. 83, 1467 (2011)

    Article  ADS  Google Scholar 

  5. J. Erler et al., Nature 486, 509 (2012)

    Article  ADS  Google Scholar 

  6. M. Pfützner et al., Rev. Mod. Phys. 84, 567 (2012)

    Article  ADS  Google Scholar 

  7. Y.E. Penionzhkevich, Phys. of Part. and Nucl. 43, 452 (2012)

    Article  Google Scholar 

  8. S. Brett, Eur. Phys. J. A 48, 184 (2012)

    Article  ADS  Google Scholar 

  9. T. Faestermann et al., Prog. Part. Nucl. Phys. 69, 85 (2013)

    Article  ADS  Google Scholar 

  10. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  11. L. Schweikhard, G. Bollen (eds) Int. J. Mass. Spectrom. 251, 85 (2006)

    Google Scholar 

  12. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)

    Article  ADS  Google Scholar 

  13. G. Bollen et al., Hyp. Int. 38, 793 (1987)

    Article  ADS  Google Scholar 

  14. M. Mukherjee et al., Eur. Phys. J. A35, 31 (2008)

    Article  ADS  Google Scholar 

  15. H.J. Kluge Int. J. Mass Spectrom. (2013). doi:10.1016/j.ijms.2013.04.017

  16. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  17. M. König et al., Int. J. Mass. Spectrom. 142, 95 (1995)

    Article  ADS  Google Scholar 

  18. S. George et al., Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  19. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  20. M. Kretzschmar, Int. J. Mass. Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  21. G. Bollen et al., Nucl. Instr. Methods B 70, 490 (1992)

    Article  ADS  Google Scholar 

  22. R. Ringle et al., Int. J. Mass Spectrom. 262, 33 (2007)

    Article  ADS  Google Scholar 

  23. S. Eliseev et al., Int. J. Mass Spectrom. 262, 45 (2007)

    Article  ADS  Google Scholar 

  24. S. Eliseev et al., Phys. Rev. Lett. 107, 152501 (2011)

    Article  ADS  Google Scholar 

  25. I. Bergström et al., Nucl. Instr. and Meth. A 487, 618 (2002)

    Article  ADS  Google Scholar 

  26. A. Gallant et al., Phys. Rev. C 85, 044311 (2012)

    Article  ADS  Google Scholar 

  27. S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)

    Article  ADS  Google Scholar 

  28. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  29. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  30. L. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  31. L. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)

    Article  ADS  Google Scholar 

  32. G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)

    Article  ADS  Google Scholar 

  33. M. Kretzschmar, Int. J. Mass Spectrom. 309, 30 (2012)

    Article  Google Scholar 

  34. S. Eliseev, Y. Novikov, K. Blaum, J. Phys. G. Nucl. Pgts. 39, 124003 (2012)

    Article  ADS  Google Scholar 

  35. Eronen et al., Phys. Rev. Lett. 100, 132502 (2008)

    Article  ADS  Google Scholar 

  36. Eronen et al., Phys. Rev. Lett. 103, 252501 (2009)

    Article  ADS  Google Scholar 

  37. Eronen et al., Phys. Rev. C 83, 055501 (2011)

    Article  ADS  Google Scholar 

  38. S. Naimi et al., Phys. Rev. C 86, 014325 (2012)

    Article  ADS  Google Scholar 

  39. E.M. Ramirez et al., Science 337, 1207 (2012)

    Article  ADS  Google Scholar 

  40. A. Kankainen et al., Eur. Phys. J. A 48, 50 (2012)

    Article  ADS  Google Scholar 

  41. S. Simon et al., Phys. Rev. C 85, 064308 (2012)

    Article  ADS  Google Scholar 

  42. J. Schelt et al., Phys. Rev. C 85, 045805 (2012)

    Article  ADS  Google Scholar 

  43. M. Kretzschmar, Eur. Phys. J. D 48, 313 (2008)

    Article  ADS  Google Scholar 

  44. S. George et al., Int. J. Mass Spectrom. 299, 102 (2011)

    Article  ADS  Google Scholar 

  45. G. Bollen, R. Moore, G. Savard, H. Stolzenberg, J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  46. G. Eitel et al., Nucl. Instr. Methods A 606, 475 (2009)

    Article  ADS  Google Scholar 

  47. M. Block et al., Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  48. M. Dworschak et al., Phys. Rev. C 81, 064312 (2010)

    Article  ADS  Google Scholar 

  49. O. Jagutzki et al., Nucl. Instr. and Meth. A 477, 244 (2002)

    Article  ADS  Google Scholar 

  50. MCP delay line detector, RoentDek Handels GmbH, Kelkheim Ruppertshain (http://www.roentdek.de)

  51. C. Droese et al., Nucl. Instrum. Meth. A 632, 157 (2011)

    Article  ADS  Google Scholar 

  52. D. Neidherr et al., Nucl. Instrum. Meth. B 266, 4556 (2008)

    Article  ADS  Google Scholar 

  53. J. Ketter, T. Eronen, M. Höcker, S. Streubel, K. Blaum, arXiv:1305.4861v1 (2013)

  54. R. Wolf et al., Nucl. Instrum. Meth. A 686, 82 (2012)

    Article  ADS  Google Scholar 

  55. R.N. Wolf, et al., Int. J. Mass Spectrom. 349350, 123–133 (2013). doi:10.1016/j.ijms.2013.03.020

Download references

Acknowledgements

This work is supported by the Max-Planck Society, IMPRS-PTFS, the EU (ERC Grant No. 290870 - MEFUCO), BMBF (05P12HGFN5 and 05P12HGFNE) and by the Alliance Program of the Helmholtz Association (HA216/EMMI). Yu. N. thanks the Extreme Matter Institute (Darmstadt) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Eliseev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, S., Blaum, K., Block, M. et al. A phase-imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114, 107–128 (2014). https://doi.org/10.1007/s00340-013-5621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5621-0

Keywords

Navigation