Skip to main content
Log in

Physics-based analytic modeling and simulation of gate-induced drain leakage and linearity assessment in dual-metal junctionless accumulation nano-tube FET (DM-JAM-TFET)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Physics-based analytical model is proposed in this paper which analyzes the effect of temperature, channel length and silicon film radius on gate-induced drain leakages (GIDL) in dual-metal junctionless accumulation nano-tube FET (DM-JAM-TFET). Formulation and analysis for electric field, Ez, surface potential and gate-induced drain leakage current, Igidl have been done with the help of appropriate boundary conditions utilized in solving two-dimensional Poisson’s equation. Also, the effect of variation in temperatures at T = 300 K and 500 K, silicon film channel length (L 30 nm and 40 nm) and radius of R = 9 nm and R = 10 nm have been studied. The simulated results seem to be in good compliance with the analytical results. To analyze the applicability of DM-JAM-TFET for RFIC applications, linearity of the aforesaid device has been deeply investigated by comparing DM-JAM-TFET with JAM-GAA and DM-JAM-GAA at channel length, L = 20 nm. The linearity metrics namely gm1, gm2, gm3, VIP2, VIP3, IMD3 and IIP3 have been significantly improved in DM-JAM-TFET making it intermodulation distortion resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Semiconductor Industry Association, The National Technology Roadmap for Semiconductor Technology Needs (Sematech, Austin, 2019)

    Google Scholar 

  2. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  3. T. Sekigawa, Y. Hayashi, Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate. Solid State Electron. 27, 827–828 (1984). https://doi.org/10.1016/0038-1101(84)90036-4

    Article  ADS  Google Scholar 

  4. R.H. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704–1710 (1992). https://doi.org/10.1109/16.141237

    Article  ADS  Google Scholar 

  5. D. Frank, S.E. Laux, M.V. Fischetti, Monte Carlo simulation of a 30 nm dual-gate MOSFET: How short can Si go?, in IEDM Technical Digest, (1992), pp. 553–556. https://doi.org/10.1109/iedm.1992.307422

  6. S. Saurabh, M.J. Kumar, Fundamentals of Tunnel Field-Effect Transistors (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  7. S. Nandy, S. Srivastava, S. Rewari, V. Nath, R.S. Gupta, Dual metal Schottky barrier asymmetric gate stack cylindrical gate all around (DM-SB-ASMGS-CGAA) MOSFET for improved analog performance for high frequency application. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04577-y

    Article  Google Scholar 

  8. K.J. Kuhn, Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012). https://doi.org/10.1109/TED.2012.2193129

    Article  ADS  Google Scholar 

  9. M. Li, K.H. Yeo, S.D. Suk, Y.Y. Yeoh, D.-W. Kim, T.Y. Chung, K.S. Oh, W.-S. Lee, Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate. in Symposium on VLSI Technology, (IEEE, 2009), pp. 94–95

  10. A. Goel, S. Rewari, S. Verma, R.S. Gupta, Shallow extension engineered dual material surrounding gate (SEE-DM-SG) MOSFET for improved gate leakages, analysis of circuit and noise performance. AEU Int. J. Electron. Commun. 111, 152924 (2019)

    Article  Google Scholar 

  11. S. Bangsaruntip, G.M. Cohen, A. Majumdar, Y. Zhang, S.U. Engelmann, N.C.M. Fuller, L.M. Gignac, S. Mittal, J.S. Newbury, M. Guillorn, T. Barwicz, High performance and highly uniform gate-all around silicon nanowire MOSFETs with wire size dependent scaling. in IEDM Technical Digest (2009), pp. 297–300. https://doi.org/10.1109/iedm.2009.5424364

  12. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, R.S. Gupta, Hafnium oxide based cylindrical junctionless double surrounding gate (CJLDSG) MOSFET for high speed, high frequency digital and analog applications. Microsyst. Technol. J. (2017). https://doi.org/10.1007/s00542-017-3436-3

    Article  Google Scholar 

  13. D.I. Moon, S.J. Choi, J.P. Duarte, Y.K. Choi, Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk. IEEE Trans. Electron Devices 60(4), 1355–1360 (2013). https://doi.org/10.1109/TED.2013.2247763

    Article  ADS  Google Scholar 

  14. A. Goel, S. Rewari, S. Verma, R.S. Gupta, High-K spacer dual-metal gate stack underlap junctionless gate all around (HK-DMGS-JGAA) MOSFET for high frequency applications. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04715-6

    Article  Google Scholar 

  15. B.V. Zeghbroeck, Principles of semiconductor devices., University of Colorado (Colarado, USA, 2011)

  16. Y.S. Yu, A unified analytical current model for N- and P-type accumulation- mode (junctionless) surrounding-gate nanowire FETs. IEEE Trans. Electron Devices 61(8), 3007–3010 (2014). https://doi.org/10.1109/TED.2014.2329916

    Article  ADS  Google Scholar 

  17. M.M.H. Iqbal, Y. Hong, P. Garg, F. Udrea, The nanoscale silicon accumulation-mode MOSFET a comprehensive numerical study. IEEE Trans. Electron Devices 55(11), 2946–2958 (2014). https://doi.org/10.1109/ted.2008.2005174

    Article  ADS  Google Scholar 

  18. J.P. Colinge, C.W. Lee, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, R. Yu, Junctionless transistors physics and properties, semiconductor on insulator materials for nanoelectronics applications and engineering materials (Spinger, Berlin, 2011). https://doi.org/10.1007/978-3-642-15868-1_10

    Book  Google Scholar 

  19. J. Fan, M. Li, X. Xu, Y. Yang, H. Xuan, R. Huang, Insight into gate-induced drain leakage in silicon nanowire transistors. IEEE Trans. Electron Devices 62(1), 213–219 (2015). https://doi.org/10.1109/TED.2014.2371916

    Article  ADS  Google Scholar 

  20. J. Hur, B.H. Lee, M.H. Kang, D.C. Ahn, T. Bang, S.B. Jeon, Y.K. Choi, Comprehensive analysis of gate-induced drain leakage in vertically stacked nanowire FETs: inversion-mode versus junctionless mode. IEEE Electron Device Lett. 37(5), 541–544 (2016). https://doi.org/10.1109/LED.2016.2540645

    Article  ADS  Google Scholar 

  21. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, R.S. Gupta, A novel design to improve band to band tunneling and to reduce gate induced drain leakages (GIDL) in cylindrical gate all around (GAA) MOSFET. Microsyst. Technol. J. (2017). https://doi.org/10.1007/s00542-017-3446-1

    Article  Google Scholar 

  22. T. Hoffmann, G. Doornbos, I. Ferain, N. Collaert, P. Zimmerman, M. Goodwin, R. Rooyackers, A. Kottantharayil, Y. Yim, A. Dixit, K. De Meyer, GIDL (gate-induced drain leakage) and parasitic Schottky barrier leakage elimination in aggressively scaled HfO2/TiN FinFET devices. in IEDM Technical Digest, (2005), pp. 725–729. https://doi.org/10.1109/iedm.2005.1609455

  23. S. Sahay, M.J. Kumar, Controlling L-BTBT in emerging nanotube FETs using dual-material gate. IEEE J. Electron Device Soc. 6, 611–621 (2018). https://doi.org/10.1109/JEDS.2018.2829633

    Article  Google Scholar 

  24. B. Razavi, RF Microelectronics (Prentice-Hall, Upper Saddle River, 1998)

    Google Scholar 

  25. P. Ghosh, S. Haldar, R.S. Gupta, M. Gupta, An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC designs. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012). https://doi.org/10.1109/TED.2012.2219537

    Article  ADS  Google Scholar 

  26. T. Wang, L. Lou, C. Lee, A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Devices Lett. 34(4), 478–480 (2013). https://doi.org/10.1109/LED.2013.2244056

    Article  ADS  Google Scholar 

  27. R. Lin, Q. Lu, P. Ranade, T.J. King, C. Hu, An adjustable work function technology using Mo gate for CMOS devices. IEEE Electron Devices Lett. 23(1), 49–51 (2002). https://doi.org/10.1109/55.974809

    Article  ADS  Google Scholar 

  28. ATLAS User’s Manual: 3-D Device Simulator, SILVACO International, Version5.14.0.R, 2018

  29. H. Cheng, S. Uno, K. Nakazato, Analytic compact model of ballistic and quasi-ballistic transport for cylindrical gate-all-around MOSFET including drain-induced barrier lowering effect. J. Comput. Electron. 14(1), 321–328 (2015)

    Article  Google Scholar 

  30. G. Timp et al., The ballistic nano-transistor. in IEDM Technical Digest, Washington, DC, USA, (1999), pp. 55–58

  31. A. Tsormpatzoglou, D.H. Tassis, C.A. Dimitriadis, G. Ghibaudo, G. Pananakakis, R. Clerc, A compact drain current model of shortchannel cylindrical gate-all-around MOSFETs. Semicond. Sci. Technol. 24(7), 075017 (2009)

    Article  ADS  Google Scholar 

  32. A. Goel, S. Rewari, S. Verma, R.S. Gupta, Temperature-dependent gate-induced drain leakages assessment of dual-metal nanowire field-effect transistor—analytical model. IEEE Trans. Electron Devices 66(5), 2437–2445 (2019). https://doi.org/10.1109/ted.2019.2898444

    Article  Google Scholar 

  33. N. Gupta, J.B. Patel, A.K. Raghav, “Performance and a new 2-D analytical modeling of a dual-halo dual-dielectric triple-material surrounding-gate-all-around (DH-DD-TM-SGAA) MOSFET. J. Eng. Sci. Technol. 13(11), 3619–3631 (2018)

    Google Scholar 

  34. M. Hasanuzzaman, S.K. Islam, L.M. Tolber, Effects of temperature variation (300–600 K) in MOSFET modeling in 6H-silicon carbide. Solid State Electron. 48, 125–132 (2004)

    Article  ADS  Google Scholar 

  35. S. Sahay, M.J. Kumar, Nanotube junctionless field effect transistor: proposal, design and investigation. IEEE Trans. Electron Devices 64(4), 1851–1856 (2017). https://doi.org/10.1109/TED.2017.2672203

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, Maharaja Agrasen Institute of Technology for providing necessary facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Goel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ A_{n} = \frac{{X_{n} - W_{n} e^{{( - \eta_{n} (L_{1} + L_{2} )}} - \frac{{Z_{n} }}{2}e^{{( - \eta_{n} (L_{1} + 2L_{2} )}} }}{{2\sin h\;(\eta_{n} L)}} $$
$$ B_{n} = \frac{{W_{n} e^{{( - \eta_{n} (L_{1} + L_{2} )}} - X_{n} - Y_{n} e^{{ - \eta_{n} L_{2} )}} }}{{2\sin h\;(\eta_{n} L)}} $$
$$ C_{n} = \frac{{Z_{n} - Y_{n} e^{{( - \eta_{n} (L_{1} + L_{2} )}} - X_{n} }}{{2\sin h\;(\eta_{n} L)}} $$
$$ D_{n} = \frac{{Y_{n} e^{{\eta_{n} (L_{1} + L_{2} )}} - Z_{n} + X_{n} }}{{2\sin h\;(\eta_{n} L)}} $$
$$ W_{n} = \frac{2}{{t^{2} J_{1}^{2} (\eta_{n} t_{\text{eff}} )}}\left[ \begin{aligned} & \left( {V_{\text{bi}} - V_{{{\text{gseff}}1}} + \frac{{t_{\text{si}} }}{2}} \right)\frac{{t_{\text{eff}} J_{1} (\eta_{n} t_{\text{eff}} )}}{\eta n} \\ & \quad + \frac{{\wp t\;_{\text{eff}} }}{{\eta_{n}^{2} }}\left\{ {t_{\text{eff}} J_{2} (\eta_{n} t_{\text{eff}} ) - \left( {t_{\text{eff}} - \frac{{t_{\text{eff}} }}{2}} \right)\left( {\frac{{J_{1} \left( {\eta_{n} t_{eff} } \right)}}{\eta nteff - 1} - J_{0} (\eta_{n} t_{\text{eff}} )} \right)} \right\} \\ \end{aligned} \right] $$
$$ X_{n} = \frac{2}{{t^{2} J_{1}^{2} (\eta_{n} t_{\text{eff}} )}}\left[ \begin{aligned} & \left( {V_{\text{bi}} + V_{\text{ds}} - V_{{{\text{gseff}}1}} + \frac{{t{\text{si}}}}{2}} \right)\frac{{t_{\text{eff}} J_{1} (\eta_{n} t_{\text{eff}} )}}{{\eta_{n} }} \\ & \quad + \;\frac{{\wp t_{\text{eff}} }}{{\eta_{n}^{2} }}\left\{ {t_{\text{eff}} J_{2} (\eta_{n} t_{\text{eff}} ) - \left( {t_{\text{eff}} - \frac{{t_{\text{eff}} }}{2}} \right)\left( {\frac{{J_{1} \left( {\eta_{n} t_{\text{eff}} } \right)}}{{\eta_{n} t_{\text{eff}} - 1}} - J_{0} (\eta_{n} t_{\text{eff}} )} \right)} \right\} \\ \end{aligned} \right] $$
$$ Y_{n} = \frac{2}{{t^{2} J_{1}^{2} (\eta_{n} t_{\text{eff}} )}}\left[ \begin{aligned} & \left( {V_{\text{bi}} - V_{{{\text{gseff}}2}} + \frac{{t_{\text{si}} }}{2}} \right)\frac{{t_{\text{eff}} J_{1} (\eta_{n} t_{\text{eff}} )}}{{\eta_{n} }} \\ & \quad + \;\frac{{\wp t_{\text{eff}} }}{{\eta_{n}^{2} }}\left\{ {t_{\text{eff}} J_{2} (\eta_{n} t_{\text{eff}} ) - \left( {t_{\text{eff}} - \frac{{t_{\text{eff}} }}{2}} \right)\left( {\frac{{J_{1} \left( {\eta_{n} t_{\text{eff}} } \right)}}{{\eta_{n} t_{\text{eff}} - 1}} - J_{0} (\eta_{n} t_{\text{eff}} )} \right)} \right\} \\ \end{aligned} \right] $$
$$ Z_{n} = \frac{2}{{t^{2} J_{1}^{2} (\eta_{n} t_{\text{eff}} )}}\left[ \begin{aligned} & \left( {V_{\text{bi}} + V_{\text{ds}} - V_{{{\text{gseff}}2}} + \frac{{t_{\text{si}} }}{2}} \right)\frac{{t_{\text{eff}} J_{1} (\eta_{n} t_{\text{eff}} )}}{\eta n} \\ & \quad + \;\frac{{{\wp }t_{\text{eff}} }}{{\eta_{n}^{2} }}\left\{ {t_{\text{eff}} J_{2} (\eta_{n} t_{\text{eff}} ) - \left( {t_{\text{eff}} - \frac{{t_{\text{eff}} }}{2}} \right)\left( {\frac{{J_{1} \left( {\eta_{n} t_{\text{eff}} } \right)}}{{\eta_{n} t_{\text{eff}} - 1}} - J_{0} (\eta_{n} t_{\text{eff}} )} \right)} \right\} \\ \end{aligned} \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, A., Rewari, S., Verma, S. et al. Physics-based analytic modeling and simulation of gate-induced drain leakage and linearity assessment in dual-metal junctionless accumulation nano-tube FET (DM-JAM-TFET). Appl. Phys. A 126, 346 (2020). https://doi.org/10.1007/s00339-020-03520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03520-7

Keywords

Navigation