Skip to main content
Log in

Controlled synthesis, morphological, optical and electrical properties of copper-doped zinc oxysulfide nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxysulfide nanostructures may have physical and chemical properties that are different from ZnS or ZnO. Therefore, Cu-doped oxysulfide nanostructures were prepared by vapor transport and their properties were characterized by various techniques. EDAX analysis confirmed the presence of Zn, S, O and Cu in the samples. XRD revealed the formation of mixed phases of hexagonal ZnS, orthorhombic ZnSO4, and hexagonal ZnO that is dependent on Cu content. The undoped sample has nanowire morphology. The increase in Cu doping changed the morphology form NWs to a mixture of NWs and nanoparticles (NPs), and then to NPs. The undoped oxysulfide sample has band gap of 4.08 eV, and the band gap decreased to 3.57 eV at 5% Cu doping. The PL intensity was enhanced upon Cu doping with 5 and 10 at% Cu while it weakened at higher Cu contents. The electrical resistivity decreased with Cu content and a thermally activated semiconducting behavior was reported for all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  2. S. Ummartyotin, Y. Infahsaeng, Renew. Sust. Energ. Rev. 55, 17–24 (2016)

    Article  Google Scholar 

  3. J. Luo, Y. Wang, Q. Zhang, Sol. Energy 163, 289–306 (2018)

    Article  ADS  Google Scholar 

  4. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sust. Energ. Rev. 81, 536–551 (2018)

    Article  Google Scholar 

  5. S. Bereznev, H. Kocharyan, N. Maticiuc, R. Naidu, O. Volobujeva, A. Tverjanovich, J. Kois, Appl. Surf. Sci. 425, 722–727 (2017)

    Article  ADS  Google Scholar 

  6. Q. Cheng, D. Wang, H. Zhou, J. Energy Chem. 27, 913–922 (2017)

    Article  Google Scholar 

  7. J. Ma, K. Tang, H. Mao, J. Ye, S. Zhu, Z. Xu, Z. Yao, S. Gu, Y. Zheng, Appl. Surf. Sci. 435, 297–304 (2018)

    Article  ADS  Google Scholar 

  8. K.V.P. Kumar, O.S.N. Ghosh, G. Balakrishnan, P. Thirugnanasambantham, S.K. Raghavan, A.K. Viswanath, RSC Adv. 5, 16815 (2015)

    Article  Google Scholar 

  9. N.S. Gultom, H. Abdullah, D.-H. Kuo, Int. J. Hydrogen. Energy 42, 25891–25902 (2017)

    Article  Google Scholar 

  10. S.K. Pandey, S. Pandey, V. Parashar, R.S. Yadav, G.K. Mehrotra, A.C. Pandey, Nanoscale 6, 1602 (2014)

    Article  ADS  Google Scholar 

  11. I. Polat, S. Aksu, M. Altunbaş, E. Bacaksız, Mater. Chem. Phys. 130, 800–805 (2011)

    Article  Google Scholar 

  12. B.Y. Geng, G.Z. Wang, Z. Jiang, T. Xie, S.H. Sun, G.W. Meng, L.D. Zhang, Appl. Phys. Lett. 82, 4791 (2003)

    Article  ADS  Google Scholar 

  13. Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, Mater. Sci. Eng. R 47, 1–47 (2004)

    Article  Google Scholar 

  14. S.H. Mohamed, Phil. Mag. 91, 3598–3612 (2011)

    Article  ADS  Google Scholar 

  15. J. Kuili Liu, Q. Li, M. Liu, L. Meng, H.C. Xu, J. Alloys Compd. 718, 122–125 (2017)

    Article  Google Scholar 

  16. K. Poornima, K.G. Krishnan, B. Lalitha, M. Raja, Superlattice. Microst. 83, 147–156 (2015)

    Article  ADS  Google Scholar 

  17. G.-J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Ind. Eng. Chem. Res. 53, 8766–8772 (2014)

    Article  Google Scholar 

  18. R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Sensor Actuat. A- Phys. 269, 331–341 (2018)

    Article  Google Scholar 

  19. M. Li, Y. Ding, P. Liu, L. Fang, L. Li, W. Zhang, L. Zhang, Y. He, J. Alloys Compd. 630, 106–109 (2015)

    Article  Google Scholar 

  20. E.H. Kisi, M.M. Elcombe, Acta Crystallogr. C 45, 1867–1870 (1989)

    Article  Google Scholar 

  21. P.A. Kokkoros, P.J. Rentzeperis, Acta Crystallogr 11, 361–364 (1958)

    Article  Google Scholar 

  22. J. Albertsson, S.C. Abrahams, A. Kvick, Acta Crystallogr. B 45, 34–40 (1989)

    Article  Google Scholar 

  23. V.V. Atuchin, T.A. Gavrilova, T.I. Grigorieva, N.V. Kuratieva, K.A. Okotrub, N.V. Pervukhina, N.V. Surovtsev, J. Cryst. Growth 318, 987–990 (2011)

    Article  ADS  Google Scholar 

  24. V.V. Atuchin, T.A. Gavrilova, K.A. Kokh, N.V. Kuratieva, N.V. Pervukhina, N.V. Surovtsev, Solid State Commun. 152, 1119–1122 (2012)

    Article  ADS  Google Scholar 

  25. K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, N.V. Kuratieva, N.V. Pervukhina, N.V. Surovtsev, Solid State Commun. 177, 16–19 (2014)

    Article  ADS  Google Scholar 

  26. W. Kurt, Kolasinski, Current Opinion Solid State Mater. Sci. 10(4), (3 (2006), – 182–191.

    Google Scholar 

  27. S. Li, X. Huang, Q. Liu, X. Cao, F. Huo, H. Zhang, C.L. Gan, Nano Lett. 12(11), 5565–5570 (2012)

    Article  ADS  Google Scholar 

  28. N. Wang, M. Upmanyu, A. Karma, Phys. Rev. Mater 2, 033402 (2018)

    Article  Google Scholar 

  29. S.H. Mohamed, M. El-Hagary, S. Althoyaib, Appl. Phys. A 111, 1207–1212 (2013)

    Article  ADS  Google Scholar 

  30. R. Raji, K.G. Gopchandran, Mater. Res. Express 4, 025002 (2017)

    Article  ADS  Google Scholar 

  31. D.F. Swinehart, The Beer-Lambert Law. J. Chem. Educ. 39, 333 (1962)

    Article  Google Scholar 

  32. N.M.A. Hadia, M.F. Hasaneen, M.A. Hassan, S.H. Mohamed, J. Mater. Sci. Mater. Electron. 29, 4155–4162 (2018)

    Article  Google Scholar 

  33. J. Tauc, Amorphous and liquid semiconductors (Plenum Press, London, 1974)

    Book  Google Scholar 

  34. N. Üzar, M. Arikan, Bull. Mater. Sci. 34, 287–292 (2011)

    Article  Google Scholar 

  35. M. Arshad, M. Meenhaz Ansari, A.S. Ahmed, P. Tripathi, S.S.Z. Ashraf, A.H. Naqvi, A. Azam, J. Lumin. 161, 275–280 (2015)

    Article  Google Scholar 

  36. G.-J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Renew. Energ. 89, 18–26 (2016)

    Article  Google Scholar 

  37. S.H. Mohamed, J. Phys. D: Appl. Phys. 43, 035406 (8 pp) (2010)

    Article  ADS  Google Scholar 

  38. F. Ghahramanifard, A. Rouhollahi, O. Fazlolahzadeh, Superlattices Microstruct. 114, 1–14 (2018)

    Article  ADS  Google Scholar 

  39. Q. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing,, B. Lassen, P.C. Eklund, L. C. Lew Yan Voon. Nano Lett. 4, 1663 (2004)

    Article  ADS  Google Scholar 

  40. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wua, Y. Bando, D. Golberg, Prog. Mater Sci. 56, 175–287 (2011)

    Article  Google Scholar 

  41. H. Chander, Mater. Sci. Eng. R 49, 113–155 (2005)

    Article  Google Scholar 

  42. W.Q. Peng, G.W. Gong, S.C. Qu, Z.G. Wang, Optic. Mater. 29, 313 (2006)

    Article  ADS  Google Scholar 

  43. J. Hasanzadeh. A. Taherkhani, M. Ghorbani, Chinese J. Phys. 51, 540 (2013)

    Google Scholar 

  44. S.A. Makhlouf, M.A. Kassem, M.A. Abdel-Rahim, J. Mater. Sci. 44, 3438–3444 (2009)

    Article  ADS  Google Scholar 

  45. A. Dharaa, S. Sainb, S. Dasc, S.K. Pradhan, Mater. Res. Bull. 97, 169–175 (2018)

    Article  Google Scholar 

  46. K.S. Rathore, D. Deepika, N.S. Patidar, K.B. Saxena, J. Sharma, J. Ovonic Res. 5(6), 175–185 (2009) December )

    Google Scholar 

  47. C.V. Ramana, I.B. Troitskaia, S.A. Gromilov, V.V. Atuchin, Ceram. Int. 38, 5251–5155 (2012)

    Article  Google Scholar 

  48. V.V. Atuchin, S.A. Bereznaya, N.F. Beisel, Z.V. Korotchenko, V.N. Kruchinin, L.D. Pokrovsky, A.I. Saprykin, S. Yu. Sarkisov, Mater. Chem. Phys. 146, 12–17 (2014)

    Article  Google Scholar 

  49. V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, V.V. Atuchin, Chin. J. Phys. 55, 59–63 (2017)

    Article  Google Scholar 

  50. A. Goktas, F. Aslan, A. Tumbul, J. Sol Gel. Sci. Technol. 75, 45–53 (2015)

    Article  Google Scholar 

  51. F.F. Göde, C. Gümüş, J. Optoelectron. Adv. Mater. 11, 429 (2009)

    Google Scholar 

  52. S. Chellammal, S. Sankar, S. Selvakumar, E. Viswanathan, R. Murugaraj, K. Sivaji, J. Mater. Sci. 45, 1242–1247 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, M.S., Hadia, N.M.A. & Mohamed, S.H. Controlled synthesis, morphological, optical and electrical properties of copper-doped zinc oxysulfide nanostructures. Appl. Phys. A 124, 617 (2018). https://doi.org/10.1007/s00339-018-2046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2046-y

Navigation