Skip to main content
Log in

Structural, Optical, and Electrical Properties of Cu-Doped ZnS Nanoparticles Prepared by Solid-State Reaction

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Zinc sulfide (ZnS) is one of the leading semiconductors for optoelectronic device applications. Here, we focused on synthesizing the undoped and transition metal (Cu)-doped ZnS (Zn\(_{1-x}\)Cu\(_{x}\)S) nanoparticles at different copper concentrations (x = 0, 0.03, 0.05, 0.07) using solid-state reaction. The synthesized Zn\(_{1-x}\)Cu\(_{x}\)S nanoparticles were subjected to different characterizations such as XRD, FE-SEM, EDS, UV–visible spectroscopy, PL, and two probe methods to study their structural, morphological, elemental, optical, and electrical properties. The XRD profile revealed that the prepared nanoparticles were in cubic structure with predominant orientation along (1 1 1) plane. The EDAX spectra confirmed the presence of host and dopant elements such as Zn, S, and Cu without any impurity elements. The formation of spherical-shaped clusters was confirmed by FE-SEM images. Using absorption spectra, the band gaps were calculated. Novel luminescence features, i.e., blue, green, and orange-red emission peaks, were observed in the photoluminescence spectra. Electrical properties were studied using two probe method (Keysight B2900 source meter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. L. He et al., One-pot synthesis of color-tunable copper doped zinc sulfide quantum dots for solid-state lighting devices. J. Alloys Compd. 787, 537–542 (2019). https://doi.org/10.1016/j.jallcom.2019.02.150

    Article  Google Scholar 

  2. V. Lahariya, M. Ramrakhiani, Luminescence study on Mn, Ni Co-doped zinc sulfide nanocrystals. Luminescence 35(6), 924–933 (2020). https://doi.org/10.1002/bio.3802

    Article  Google Scholar 

  3. E. Jubeer, M.A. Manthrammel, M. Shkir, P. Subha, I. Yahia, S. Alfaify, Microwave assisted synthesis of quantum dots like ZnS nanoparticles for optoelectronic applications: An effect of CTAB concentrations. Optik 240, 166812 (2021). https://doi.org/10.1016/j.ijleo.2021.166812

    Article  ADS  Google Scholar 

  4. D. Sharma, B. Malik, A. Gaur, Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots. J. Phys. Chem. Solids 87, 163–170 (2015). https://doi.org/10.1016/j.jpcs.2015.08.011

    Article  ADS  Google Scholar 

  5. K. Bindu, E. Anila, Optimized synthesis temperature and doping concentration of copper in zinc sulphide nanoparticles for green emission. Mater. Sci. Semicond. Process. 121, 105317 (2021). https://doi.org/10.1016/j.mssp.2020.105317

    Article  Google Scholar 

  6. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I.K. Punithavathy, J.P. Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018). https://doi.org/10.1016/j.solener.2017.10.055

    Article  ADS  Google Scholar 

  7. C.-J. Chang, Y.-H. Wei, W.-S. Kuo, Free-standing CuS-ZnS decorated carbon nanotube films as immobilized photocatalysts for hydrogen production. Int. J. Hydrog. Energy. 44(58), 30553–30562 (2019). https://doi.org/10.1016/j.ijhydene.2018.04.229

    Article  Google Scholar 

  8. A. Segura et al., Sulfidogenic bioreactor-mediated formation of ZnS nanoparticles with antimicrobial and photocatalytic activity. Nanomaterials 13(5), 935 (2023). https://doi.org/10.3390/nano13050935

    Article  Google Scholar 

  9. T.-F. Yi, Y. Li, Y.-M. Li, S. Luo, Y.-G. Liu, ZnS nanoparticles as the electrode materials for high-performance supercapacitors. Solid State Ion. 343, 115074 (2019). https://doi.org/10.1016/j.ssi.2019.115074

    Article  Google Scholar 

  10. P. Dwivedi, P. Chauhan, R.K. Rawat, Effect of thermal treatment on synthesized Cu doped ZnS nanoparticles. Mater. Today: Proc. 44, 3138–3143 (2021). https://doi.org/10.1016/j.matpr.2021.02.818

    Article  Google Scholar 

  11. B. Poornaprakash, U. Chalapathi, M. Kumar, S.P. Vattikuti, B. Rajitha, P. Poojitha, S.-H. Park, Tailoring the optical and magnetic properties of ZnS nanoparticles via 3d and 4f elements co-doping. Mater. Sci. Semicond. Process. 121, 105395 (2021). https://doi.org/10.1016/j.mssp.2020.105395

    Article  Google Scholar 

  12. G. Murugadoss, Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology 11(5), 566–573 (2013). https://doi.org/10.1016/j.partic.2012.11.003

    Article  Google Scholar 

  13. R. Singh, R.R. Singh, Optical properties of ZnS quantum dots: applications in solar cells and biomedicine. Biointerface Res. Appl. Chem. 13(2), 1–9 (2023). https://doi.org/10.33263/BRIAC132.158

    Article  ADS  Google Scholar 

  14. R. Balakarthikeyan, A. Santhanam, S. Vinoth, A.A. Abdeltawab, S.Z. Mohammady, M. Ubaidullah, S.F. Shaikh, M.S. Samdani, M.A. Manthrammel, M. Shkir, Enhancing the optoelectronic properties of low-cost nebulizer spray pyrolysis (NSP) prepared ZnS thin film through praseodymium doping for photodetector applications. Mater. Sci. Eng. B 289, 116213 (2023). https://doi.org/10.1016/j.mseb.2022.116213

    Article  Google Scholar 

  15. X. Du, H. Zhao, Z. Zhang, Y. Lu, C. Gao, Z. Li, Y. Teng, L. Zhao, K. Świerczek, Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim. Acta 225, 129–136 (2017). https://doi.org/10.1016/j.electacta.2016.12.118

    Article  Google Scholar 

  16. W. Zhang, Z. Huang, H. Zhou, S. Li, C. Wang, H. Li, Z. Yan, F. Wang, Y. Kuang, Facile synthesis of ZnS nanoparticles decorated on defective CNTs with excellent performances for lithium-ion batteries anode material. J. Alloys Compd. 816, 152633 (2020). https://doi.org/10.1016/j.jallcom.2019.152633

    Article  Google Scholar 

  17. L. Wang, D. Li, Q. Li, Q. Pan, M. Zhang, L. Zhang, F. Zheng, Y. Huang, H. Wang, Q. Li, Ultrafine ZnS nanoparticles embedded in N-doped carbon as advanced anode materials for lithium ion batteries and sodium ion batteries. J. Alloys Compd. 910, 164783 (2022). https://doi.org/10.1016/j.jallcom.2022.164783

    Article  Google Scholar 

  18. M. Bhushan, R. Jha, R. Bhardwaj, Reduced band gap and diffusion controlled spherical n-type ZnS nanoparticles for absorption of UV-Vis region of solar spectrum. J. Phys. Chem. Solids 135, 109021 (2019). https://doi.org/10.1016/j.jpcs.2019.05.018

    Article  Google Scholar 

  19. N. Masmali, Z. Osman, A. Arof, Electrical properties of zinc sulfide and silver sulfide as binary salts in gel polymer electrolytes for quantum Dot-Sensitized solar cells. Mater. Sci. Eng. B 288, 116168 (2023). https://doi.org/10.1016/j.mseb.2022.116168

    Article  Google Scholar 

  20. R.A.S. Christinal, I. Prakash, A.A. Arunmozhi, S. Chakravarty, A.L. Rajesh, Variation of sulfur concentration on the effective deposition of solution processed ZnS thin films for buffer layer in thin film solar cells. Mater. Today Proc. 68, 356–362 (2022). https://doi.org/10.1016/j.matpr.2022.05.569

    Article  Google Scholar 

  21. S. Muthukumaran et al., Structural, FTIR and photoluminescence properties of ZnS: Cu thin films by chemical bath deposition method. Mater. Lett. 93, 223–225 (2013). https://doi.org/10.1016/j.matlet.2012.11.091

    Article  Google Scholar 

  22. S.K. Sundaram, S. Subramanian, V. Panneerselvam, S.T. Salammal, Temperature-dependent phase transition of CuZnS thin films and its effects on morphological, optical and electrical properties. Thin Solid Films 733, 138810 (2021). https://doi.org/10.1016/j.tsf.2021.138810

    Article  ADS  Google Scholar 

  23. G.K. VS, S.R. Maidur, P.S. Patil, M. Mahesha, Role of copper dopant in two-photon absorption and nonlinear optical properties of sprayed ZnS thin films for optical limiting applications. Phys. Lett. A 398, 127276 (2021). https://doi.org/10.1016/j.physleta.2021.127276

    Article  Google Scholar 

  24. B. Ayim-Otu, M. Kuncan, Ö. Şahin, S. Horoz, Synthesis and photovoltaic application of ZnS: Cu (3%) nanoparticles. J. Aust. Ceram. Soc. 56, 639–643 (2020). https://doi.org/10.1007/s41779-019-00380-0

    Article  Google Scholar 

  25. R. Chauhan, A. Kumar, R.P. Chaudhary, Photocatalytic degradation of methylene blue with Cu doped ZnS nanoparticles. J. Lumin. 145, 6–12 (2014). https://doi.org/10.1016/j.jlumin.2013.07.005

    Article  Google Scholar 

  26. B. Cullity, Elements of X-ray diffraction, Addison-Wesley publishing company Inc., Massachusetts, USA (1956)

  27. K.C. Kumar, N.M. Rao, S. Kaleemulla, G.V. Rao, Structural, optical and magnetic properties of Sn doped ZnS nano powders prepared by solid state reaction. Phys. B: Condens. Matter 522, 75–80 (2017). https://doi.org/10.1016/j.physb.2017.07.071

    Article  ADS  Google Scholar 

  28. P. Tyagi, A. Vedeshwar, Grain size dependent optical properties of CdI2 films. The European Physical Journal Applied Physics 19(1), 3–13 (2002). https://doi.org/10.1051/epjap:2002043

    Article  ADS  Google Scholar 

  29. A. Jesu Jebathew, M. Karunakaran, R. Ade, J.S. Ponraj, V. Ganesh, R.K. Manavalan, Y. Bitla, I. Yahia, H. Algarni, Highly sensitive hexagonal-shaped ZnS-Cu thin films for photo-detector applications. J. Mater. Sci. Mater. Electron. 33, 2192–2203 (2022). https://doi.org/10.1007/s10854-021-07426-9

    Article  Google Scholar 

  30. M. Sreedhar, I. Neelakanta Reddy, P. Bera, T. Shyju, C. Anandan, Studies of Cu-doped ZnS thin films prepared by sputtering technique. Surf. Interface Anal. 49(4), 284–290 (2017). https://doi.org/10.1002/sia.6130

    Article  Google Scholar 

  31. A. Maurya, P. Chauhan, S.K. Mishra, R.K. Srivastava, Structural, optical and charge transport study of rutile TiO\(_{2}\) nanocrystals at two calcination temperatures. J. Alloys Compd. 509(33), 8433–8440 (2011). https://doi.org/10.1016/j.jallcom.2011.05.108

    Article  Google Scholar 

  32. D. Saikia, J. Borah, M. Jangra, A. Puzari, Investigation of photophysical properties of ZnS: Mn\(^{2+}\) nanoparticles. Indian J. Phys. 90(5), 549–555 (2016). https://doi.org/10.1007/s12648-015-0780-y

    Article  ADS  Google Scholar 

  33. N. Soltani, A. Dehzangi, A. Kharazmi, E. Saion, W.M.M. Yunus, B.Y. Majlis, M.R. Zare, E. Gharibshahi, N. Khalilzadeh, Structural, optical and electrical properties of ZnS nanoparticles affecting by organic coating. Chalcogenide Lett. 11(2), 79–90 (2014).  https://www.researchgate.net/publication/260596677

  34. R. Seoudi, A. Shabaka, W. Eisa, B. Anies, N. Farage, Effect of the prepared temperature on the size of CdS and ZnS nanoparticle. Phys. B: Condens. Matter 405(3), 919–924 (2010). https://doi.org/10.1016/j.physb.2009.10.015

    Article  ADS  Google Scholar 

  35. N. Nripasree, N.K. Deepak, Structural, optical and electrical properties of Sn–N codoped p type ZnO thin films prepared by spray pyrolysis technique for diode applications. Mater. Sci. Eng. B 211, 121–127 (2016). https://doi.org/10.1016/j.mseb.2016.06.012

    Article  Google Scholar 

  36. H. Labiadh, B. Sellami, A. Khazri, W. Saidani, S. Khemais, Optical properties and toxicity of undoped and Mn-doped ZnS semiconductor nanoparticles synthesized through the aqueous route. Opt. Mater. 64, 179–186 (2017). https://doi.org/10.1016/j.optmat.2016.12.011

    Article  ADS  Google Scholar 

  37. A. Mukherjee, P. Mitra, Characterization of Sn doped ZnS thin films synthesized by CBD. Mater. Res. 20, 430–435 (2017). https://doi.org/10.1590/1980-5373-MR-2016-0628

    Article  Google Scholar 

  38. G. Cody, B. Brooks, B. Abeles, Optical absorption above the optical gap of amorphous silicon hydride. Solar Energy Materials 8(1–3), 231–240 (1982). https://doi.org/10.1016/0165-1633(82)90065-X

    Article  ADS  Google Scholar 

  39. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12(4), 470–475 (2018). https://doi.org/10.1080/16583655.2018.1473946

    Article  Google Scholar 

  40. W. Peng, G. Cong, S. Qu, Z. Wang, Synthesis and photoluminescence of zns: Cu nanoparticles. Optical Materials 29(2–3), 313–317 (2006). https://doi.org/10.1016/j.optmat.2005.10.003

    Article  ADS  Google Scholar 

  41. S. Lee, D. Song, J. Lee, S. Kim, I.Y. Park, M.-S. Won, Enhancement of luminescence efficiency of ZnS: Cu nanocrystals by pH control. Materials Science and Engineering: B 103(3), 241–245 (2003). https://doi.org/10.1016/S0921-5107(03)00240-X

    Article  Google Scholar 

  42. N. Prasad, K. Balasubramanian, Optical, phonon and efficient visible and infrared photocatalytic activity of Cu doped ZnS micro crystals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 687–694 (2017). https://doi.org/10.1016/j.saa.2016.10.014

    Article  ADS  Google Scholar 

  43. A. Datta, S.K. Panda, S. Chaudhuri, Phase transformation and optical properties of Cu-doped ZnS nanorods. J. Solid State Chem. 181(9), 2332–2337 (2008). https://doi.org/10.1016/j.jssc.2008.05.037

    Article  ADS  Google Scholar 

  44. K. Jayanthi, S. Chawla, H. Chander, D. Haranath, Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Cryst. Res. Technol. J. Exp. Industr. Crystallogr. 42(10), 976–982 (2007). https://doi.org/10.1002/crat.200710950

    Article  Google Scholar 

  45. D. Van Thai, P. Van Ben, V.Q. Trung, B.H. Van, N.M. Nghia, T.M. Thi, Luminescence enhancement of ZnS: Mn and ZnS: Cu-PVP nanoparticles by laser radiation annealing. Opt. Mater. 135, 113020 (2023). https://doi.org/10.1016/j.optmat.2022.113020

    Article  Google Scholar 

  46. C. Wang, B. Hu, L. Chen, N. Liu, J. Li, Preparation and characterization of ZnS nanostructures. Optik 224, 165673 (2020). https://doi.org/10.1016/j.ijleo.2020.165673

    Article  ADS  Google Scholar 

  47. W. Que et al., Photoluminescence and electroluminescence from copper doped zinc sulphide nanocrystals/polymer composite. Appl. Phys. Lett. 73(19), 2727–2729 (1998). https://doi.org/10.1063/1.122571

    Article  ADS  Google Scholar 

  48. K. Zhang, D. Jing, Q. Chen, L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts. Int. J. Hydrog. Energy 35(5), 2048–2057 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.143

    Article  Google Scholar 

  49. P. Peka, H.-J. Schulz, Empirical one-electron model of optical transitions in Cu-doped ZnS and CdS. Phys. B: Condens. Matter 193(1), 57–65 (1994). https://doi.org/10.1016/0921-4526(94)90052-3

    Article  ADS  Google Scholar 

  50. L. Xiao, H. Chen, J. Huang, Visible light-driven photocatalytic H\(_{2}\)-generation activity of CuS/ZnS composite particles. Mater. Res. Bull. 64, 370–374 (2015). https://doi.org/10.1016/j.materresbull.2015.01.008

  51. M.H. Suhail, O.G. Abdullah, R.A. Ahmed, S.B. Aziz, Photovoltaic properties of doped zinc sulfide/n-Si heterojunction thin films. Int. J. Electrochem. Sci. 13, 1472–1483 (2018). https://doi.org/10.20964/2018.02.50

    Article  Google Scholar 

  52. S. Thirumavalavan, K. Mani, S. Sagadevan, Investigation of the structural, optical and electrical properties of copper selenide thin films. Mater. Res. 18, 1000–1007 (2015). https://doi.org/10.1590/1516-1439.039215

    Article  Google Scholar 

  53. J.O. Emegha, E.D. Elete, F.O.-O. Efe, A.C. Adebisi, Optical and electrical properties of semiconducting ZnS thin film prepared by chemical bath deposition technique. Catalysis 4, 1–8 (2019). https://doi.org/10.13140/RG.2.2.27024.35841

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ravi Sankar Reddy M contributed to the investigation, data collection, conceptualization, methodology, and manuscript write-up, and S. Kaleemulla contributed to the validation, supervision, and visualization.

Corresponding author

Correspondence to Kaleemulla Shaik.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mummadi, R.S.R., Shaik, K. Structural, Optical, and Electrical Properties of Cu-Doped ZnS Nanoparticles Prepared by Solid-State Reaction. Braz J Phys 54, 78 (2024). https://doi.org/10.1007/s13538-024-01457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01457-3

Keywords

Navigation