Skip to main content
Log in

Magnetoresistance in granular films formed by CoFe and phase change material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetoresistance having a field and current dependence like that of GMR (but a rather small magnitude) has been observed in Co70Fe30/GeTe and Co70Fe30/Ge2Sb2Te5 granular films. Film stacks were fabricated using tandem (multilayer) deposition and annealing was required for the films to develop the GMR-type response. This GMR-type behavior is distinct from AMR, which is observed before annealing. With films having the structure [CoFe 4 nm/GeTe 6 nm]10, a magnetoresistance (MR) of 0.19 %, which has the GMR-type character can be observed after an optimal annealing temperature of 450 °C. TEM and X-ray reflectometry suggest that columnar granules with layered Fe form during deposition and with annealing. Magnetoresistive transport is believed to be between the discontinuous layers in each columnar grain. These discontinuous layers are observed to be superparamagnetic in SQUID ZFC-FC measurements measured from 5–300 K. Magnetoresistance can be fitted by the quadratic relation appropriate for GMR in granular films, especially at higher GeTe compositions. When Ge2Sb2Te5 is used instead of GeTe, higher anneal temperatures are required before the MR with GMR character appears. This GMR type response does not appear when pure Fe is used instead of the CoFe alloy, with the samples showing only AMR in this case. This is due to the absence of Co which seems to cause a more granular growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Phase change memory. Proc. IEEE 98, 2201 (2010)

    Article  Google Scholar 

  2. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory. Proc. IEEE 91, 489 (2003)

    Article  Google Scholar 

  3. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26, 61 (1987)

    Article  Google Scholar 

  4. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007)

    Article  ADS  Google Scholar 

  5. C.L. Chien, Magnetism and giant magneto-transport properties in granular solids. Annu. Rev. Mater. Sci. 25, 129 (1995)

    Article  ADS  Google Scholar 

  6. V. Franco, X. Batlle, A. Labarta, CoFe–Cu granular alloys: from noninteracting particles to magnetic percolation. J. Appl. Phys. 85, 7328 (1999)

    Article  ADS  Google Scholar 

  7. S. Mitani, H. Fujimori, S. Ohnuma, Spin-dependent tunneling phenomena in insulating granular systems. J. Magn. Magn. Mater. 165, 141 (1997)

    Article  ADS  Google Scholar 

  8. A.Y. Vovk, J.Q. Wang, A.M. Pogoriliy, O.V. Shypil, A.F. Kravets, Magneto-transport properties of CoFe–Al2O3 granular films in the vicinity of the percolation threshold. J. Magn. Magn. Mater. 245, 476 (2002)

    Article  ADS  Google Scholar 

  9. E.M. Logothetis, W.J. Kaiser, H.K. Plummer, S.S. Shinozaki, Tandem deposition of small metal particle composites. J. Appl. Phys. 60, 2548 (1986)

    Article  ADS  Google Scholar 

  10. T.L. Hylton, K.R. Coffey, M.A. Parker, J.R. Howard, Giant magnetoresistance at low fields in discontinuous NiFe–Ag multilayer thin films. Science 261, 1021 (1993)

    Article  ADS  Google Scholar 

  11. D.C. Worledge, P.L. Trouilloud, Magnetoresistance measurement of unpatterned magnetic tunnel junction wafers by current-in-plane tunneling. Appl. Phys. Lett. 83, 84 (2003)

    Article  ADS  Google Scholar 

  12. C.T. Campbell, Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1 (1997)

    Article  ADS  Google Scholar 

  13. K. Inomata, Y. Saito, Giant magnetoresistance and low saturation fields in Co–Fe/Cu multilayers. J. Magn. Magn. Mater. 126, 425 (1993)

    Article  ADS  Google Scholar 

  14. S.R. Teixeira, B. Dieny, A. Chamberod, C. Cowache, S. Auffret, P. Auric, J.L. Rouviere, O. Redon, J. Pierre, Giant magnetoresistance in sputtered (Co70Fe30) x , Ag1−x , heterogeneous alloys. J. Phys. Condens. Matter 6, 5545 (1994)

    Article  ADS  Google Scholar 

  15. D. Babonneau, F. Petroff, J.-L. Maurice, F. Fettar, A. Vaurés, A. Naudon, Evidence for a self-organized growth in granular Co/Al2O3 multilayers. Appl. Phys. Lett. 76, 2892 (2000)

    Article  ADS  Google Scholar 

  16. C. Morawe, H. Zabel, Structure and thermal stability of sputtered metal/oxide multilayers: the case of Co/Al2O3. J. Appl. Phys. 77, 1969 (1995)

    Article  ADS  Google Scholar 

  17. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, H. Hashimoto, Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films 370, 258 (2000)

    Article  ADS  Google Scholar 

  18. C. Park, Y. Peng, J.-G. Zhu, D.E. Laughlin, R.M. White, Magnetoresistance of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature. J. Appl. Phys. 97, 10C303 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Law Leong Tat for his sputtering expertise. Huang would also like to thank the Agency for Science, Technology, and Research (A*STAR) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J.C., Song, W.D., Bain, J.A. et al. Magnetoresistance in granular films formed by CoFe and phase change material. Appl. Phys. A 113, 221–229 (2013). https://doi.org/10.1007/s00339-012-7522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7522-1

Keywords

Navigation