Skip to main content
Log in

A mutation in the start codon of γ-crystallin D leads to nuclear cataracts in the Dahl SS/Jr-Ctr strain

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Cataracts are a major cause of blindness. The most common forms of cataracts are age- and UV-related and develop mostly in the elderly, while congenital cataracts appear at birth or in early childhood. The Dahl salt-sensitive (SS/Jr) rat is an extensively used model of salt-sensitive hypertension that exhibits concomitant renal disease. In the mid-1980s, cataracts appeared in a few animals in the Dahl S colony, presumably the result of a spontaneous mutation. The mutation was fixed and bred to establish the SS/Jr-Ctr substrain. The SS/Jr-Ctr substrain has been used exclusively by a single investigator to study the role of steroids and hypertension. Using a classical positional cloning approach, we localized the cataract gene with high resolution to a less than 1-Mbp region on chromosome 9 using an F1(SS/Jr-Ctr × SHR) × SHR backcross population. The 1-Mbp region contained only 13 genes, including 4 genes from the γ-crystallins (Cryg) gene family, which are known to play a role in cataract formation. All of the γ-crystallins were sequenced and a novel point mutation in the start codon (ATG → GTG) of the Crygd gene was identified. This led to the complete absence of the CRYGD protein in the eyes of the SS/Jr-Ctr strain. In summary, the identification of the genetic cause in this novel cataract model may provide an opportunity to better understand the development of cataracts, particularly in the context of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26(1):78–98

    Article  PubMed  CAS  Google Scholar 

  • Brady JP, Garland D et al (1997) Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein αB-crystallin. Proc Natl Acad Sci USA 94(3):884–889

    Article  PubMed  CAS  Google Scholar 

  • Brady JP, Garland DL et al (2001) αB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42(12):2924–2934

    PubMed  CAS  Google Scholar 

  • Chang B, Hawes NL et al (1996) Chromosomal localization of a new mouse lens opacity gene (lop18). Genomics 36(1):171–173

    Article  PubMed  CAS  Google Scholar 

  • Churchill A, Graw J (2011) Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond B Biol Sci 366(1568):1234–1249

    Article  PubMed  Google Scholar 

  • Dahl E, Koseki H et al (1997) Pax genes and organogenesis. BioEssays 19(9):755–765

    Article  PubMed  CAS  Google Scholar 

  • Duncan G, Wormstone IM (1999) Calcium cell signalling and cataract: role of the endoplasmic reticulum. Eye 13(3b):480–483

    Article  PubMed  Google Scholar 

  • Figueroa XF, Isakson BE et al (2006) Vascular gap junctions in hypertension. Hypertension 48(5):804–811

    Article  PubMed  CAS  Google Scholar 

  • Garrett MR, Dene H et al (1998) Genome scan and congenic strains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res 8(7):711–723

    PubMed  CAS  Google Scholar 

  • Garrett MR, Dene H et al (2003) Time-course genetic analysis of albuminuria in Dahl salt-sensitive rats on low-salt diet. J Am Soc Nephrol 14(5):1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Garrett MR, Joe B et al (2006) Genetic linkage of urinary albumin excretion in Dahl salt-sensitive rats: influence of dietary salt and confirmation using congenic strains. Physiol Genomics 25(1):39–49

    Article  PubMed  CAS  Google Scholar 

  • Garrett MR, Gunning WT et al (2007) Dissection of a genetic locus influencing renal function in the rat and its concordance with kidney disease loci on human chromosome 1q21. Physiol Genomics 30(3):322–334

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Sanchez EP, Zhou M et al (1996) Mineralocorticoids, salt and high blood pressure. Steroids 61(4):184–188

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Sanchez EP, Gomez-Sanchez CM et al (2010) Aldosterone synthesis in the brain contributes to Dahl salt-sensitive rat hypertension. Exp Physiol 95(1):120–130

    Article  PubMed  CAS  Google Scholar 

  • Graw J (1997) The crystallins: genes, proteins and diseases. Biol Chem 378(11):1331–1348

    PubMed  CAS  Google Scholar 

  • Graw J (2009a) Genetics of crystallins: cataract and beyond. Exp Eye Res 88(2):173–189

    Article  PubMed  CAS  Google Scholar 

  • Graw J (2009b) Mouse models of cataract. J Genet 88(4):469–486

    Article  PubMed  CAS  Google Scholar 

  • Graw J, Löster J et al (2002) V76D mutation in a conserved gD-crystallin region leads to dominant cataracts in mice. Mamm Genome 13(8):452–455

    Article  PubMed  CAS  Google Scholar 

  • Huang B, He W (2010) Molecular characteristics of inherited congenital cataracts. Eur J Med Genet 53(6):347–357

    Article  PubMed  Google Scholar 

  • Hwang SR, Garza CZ et al (2005) Demonstration of GTG as an alternative initiation codon for the serpin endopin 2B–2. Biochem Biophys Res Commun 327(3):837–844

    Article  PubMed  CAS  Google Scholar 

  • Izzedine H, Bodaghi B et al (2003) Eye and kidney: from clinical findings to genetic explanations. J Am Soc Nephrol 14(2):516–529

    Article  PubMed  Google Scholar 

  • Joe B, Saad Y et al (2009) Positional identification of variants of Adamts16 linked to inherited hypertension. Hum Mol Genet 18(15):2825–2838

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang S et al (2006) Multiple-interval mapping for ordinal traits. Genetics 173(3):1649–1663

    Article  PubMed  CAS  Google Scholar 

  • Liska F, Chylikova B et al (2008) Microphthalmia and cataract in rats with a novel point mutation in connexin 50–L7Q. Mol Vis 14:823–828

    PubMed  CAS  Google Scholar 

  • Lübkemeier I, Machura K et al (2011) The connexin40 a96 s mutation causes renin-dependent hypertension. J Am Soc Nephrol 22(6):1031–1040

    Article  PubMed  Google Scholar 

  • Margo CE, Gomez-Sanchez EP et al (1987) Hereditary cataracts in the John Rapp inbred strain of Dahl salt-sensitive rat. Invest Ophthalmol Vis Sci 28(8):1422–1428

    PubMed  CAS  Google Scholar 

  • Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc B Biol Sci 366(1568):1278–1292

    Article  CAS  Google Scholar 

  • Mrowka C, Schedl A (2000) Wilms’ tumor suppressor gene WT1. J Am Soc Nephrol 11(suppl 2):S106–S115

    PubMed  CAS  Google Scholar 

  • Nagai N, Ito Y et al (2008) Comparison of the mechanisms of cataract development involving differences in Ca2+ regulation in lenses among three hereditary cataract model rats. Biol Pharm Bull 31(11):1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Oki K, Gomez-Sanchez EP et al (2012) Role of mineralocorticoid action in the brain in salt-sensitive hypertension. Clin Exp Pharmacol Physiol 39(1):90–95

    Article  PubMed  CAS  Google Scholar 

  • Rapp JP (1986) Strain designations for inbred Dahl salt sensitive and inbred salt resistant rats. Rat New Lett 16:1

    Google Scholar 

  • Rapp JP, Dene H (1985) Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 7(3 Pt 1):340–349

    PubMed  CAS  Google Scholar 

  • Ryskulova A, Turczyn K et al (2008) Self-reported age-related eye diseases and visual impairment in the United States: results of the 2002 National Health Interview Survey. Am J Public Health 98(3):454–461

    Article  PubMed  Google Scholar 

  • Sanderson J, Marcantonio JM et al (2000) A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Invest Ophthalmol Vis Sci 41(8):2255–2261

    PubMed  CAS  Google Scholar 

  • Sandilands A, Hutcheson AM et al (2002) Altered aggregation properties of mutant gamma-crystallins cause inherited cataract. EMBO J 21(22):6005–6014

    Article  PubMed  CAS  Google Scholar 

  • Savige J, Ratnaike S et al (2011) Retinal abnormalities characteristic of inherited renal disease. J Am Soc Nephrol 22(8):1403–1415

    Article  PubMed  Google Scholar 

  • Smith RS, Hawes NL et al (2000) Lop12, a mutation in mouse Crygd causing lens opacity similar to human Coppock cataract. Genomics 63(3):314–320

    Article  PubMed  CAS  Google Scholar 

  • Suman SK, Mishra et al (2011) Evolutionary remodeling of βγ-crystallins for domain stability at cost of Ca2+ binding. J Biol Chem 286(51):43891–43901

    Article  PubMed  CAS  Google Scholar 

  • Vicart P, Caron A et al (1998) A missense mutation in the [agr]B-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20(1):92–95

    Article  PubMed  CAS  Google Scholar 

  • Wagner N, Wagner KD et al (2002) The Wilms’ tumor suppressor Wt1 is associated with the differentiation of retinoblastoma cells. Cell Growth Differ 13(7):297–305

    PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ Zeng Z-B (2012) Windows QTL Cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed Feb 2012

  • Wang K, Cheng C et al (2007) γD-Crystallin-associated protein aggregation and lens fiber cell denucleation. Invest Ophthalmol Vis Sci 48(8):3719–3728

    Article  PubMed  Google Scholar 

  • West S (2007) Epidemiology of cataract: accomplishments over 25 years and future directions. Ophthal Epidemiol 14(4):173–178

    Article  Google Scholar 

  • Williams JM, Johnson AC et al (2012) Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension 60(5):1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Xia Ch, Liu H et al (2006) Arginine 54 and tyrosine 118 residues of αA-crystallin are crucial for lens formation and transparency. Invest Ophthalmol Vis Sci 47(7):3004–3010

    Article  PubMed  Google Scholar 

  • Yokoyama M, Amano S et al (2001) Genetic analysis of cataract in Ihara epileptic rat. Mamm Genome 12(3):207–211

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Harada Y et al (2005) New genetic model rat for congenital cataracts due to a connexin 46 (Gja3) mutation. Pathol Int 55(11):732–737

    Article  PubMed  CAS  Google Scholar 

  • Zambelli-Weiner A, Crews JE et al (2012) Disparities in adult vision health in the United States. Am J Ophthalmol 154(6 Suppl):S23–S30

    Article  PubMed  Google Scholar 

  • Zicha J, Dobesova Z et al (2012) Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 61(Suppl 1):S35–S87

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MRG is supported by NIH/NHLBI HL094446 and the Robert M. Hearin Foundation. ACH is supported by 1T32HL105324. EGS is supported by Medical Research funds from the Department of Veterans Affairs and NIH Grants HL27255 and HL75321.

Disclosures

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Garrett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.C., Lee, J.W., Harmon, A.C. et al. A mutation in the start codon of γ-crystallin D leads to nuclear cataracts in the Dahl SS/Jr-Ctr strain. Mamm Genome 24, 95–104 (2013). https://doi.org/10.1007/s00335-013-9447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9447-1

Keywords

Navigation