Skip to main content

Advertisement

Log in

Mouse models of cataract

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2010

Abstract

Much of our knowledge about the function of genes in cataracts has been derived from the molecular analysis of spontaneous or induced mutations in the mouse. Mutations affecting the mouse lens can be identified easily by visual inspection, and a remarkable number of mutant lines have been characterized. In contrast to humans, most of the genetic mouse cataract models suffer from congenital cataracts, and only a few develop cataracts in old age. Therefore, the mouse cataract models contributed rather to the understanding of lens development than to the ageing process taking place in the lens. A prerequisite formolecular analysis is the chromosomal localization of the gene. In this review, several mouse models will be discussed with emphasis on the underlying genetic basis rather than the morphological features as exemplified by the following: (i) the most frequent mutations in congenital cataracts affect genes coding for γ-crystallins (gene symbol: Cryg); (ii) some postnatal, progressive cataracts have been characterized by mutations in the β-crystallin encoding genes (Cryb); (iii) mutations in genes coding for membrane proteins like MIP or connexins lead to congenital cataracts; (iv) mutations in genes coding for transcription factors such as FoxE3, Maf, Sox1, and Six5 cause cataracts; (v) mouse models suffering from hereditary age-related cataracts (e.g. Emory cataract) have not yet been characterized genetically. In conclusion, a broad variety of hereditary congenital cataracts are well understood at the molecular level. Further, expression patterns of the affected genes in several other tissues and organs outside the eye, is making it increasingly clear that isolated cataracts are the exception rather than the rule. By further understanding the pleiotropic effects of these genes, we might recognize cataracts as an easily visible biomarker for a number of systemic syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai Y., Zheng Z., O’Brien-Jenkins A., Bernard D. J., Wynshaw-Boris T., Ning C. et al. 2000 A mouse model of galactose-induced cataracts. Hum. Mol. Genet. 12, 1821–1827.

    Article  Google Scholar 

  • Ainsbury E. A., Bouffler S. D., Dörr W., Graw J., Muirhead C. R., Edwards A. A. and Cooper J. 2009 Radiation cataractogenesis: a review of recent studies. Radiat. Res. 172, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Alizadeh A., Clark J. I., Seeberger T., Hess J., Blankenship T., Spicer A. and FitzGerald P. G. 2002 Targeted genomic deletion of the lens-specific intermediate filament protein CP49. Invest. Ophthalmol. Vis. Sci. 43, 3722–3727.

    PubMed  Google Scholar 

  • Alizadeh A., Clark J., Seeberger T., Hess J., Blankenship T. and FitzGerald P. G. 2003 Targeted deletion of the lens fibre cellspecific intermediate filament protein filensin. Invest. Ophthalmol. Vis. Sci. 44, 5252–5258.

    Article  PubMed  Google Scholar 

  • Ardayfio P., Moon J., Leung K. K., Youn-Hwang D. and Kim K. S. 2008 Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinsons disease. Neurobiol. Dis. 31, 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Barbaric I., Wells S., Russ A. and Dear T. N. 2007 Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. Environ. Mol. Mutagen. 48, 124–142.

    Article  PubMed  CAS  Google Scholar 

  • Baruch A., Greenbaum D., Levy E. T., Nielsen P. A., Gilula N. B., Kumar N. M. and Bogyo M. 2001 Defining a link between jap junction communication, proteolysis, and cataract formation. J. Biol. Chem. 276, 28999–29006.

    Article  PubMed  CAS  Google Scholar 

  • Bayle J. H., Randazzo F., Johnen G., Kaufman S., Nagy A., Rossant J. and Crabtree G. R. 2002 Hyperphenylalaninemia and impaired glucose tolerance in mice lacking the bifunctional DCoH gene. J. Biol. Chem. 277, 28884–28891.

    Article  PubMed  CAS  Google Scholar 

  • Berry V., Mackay D., Khaliq S., Francis P. J., Hameed A., Anwar K. et al. 1999 Connexin 50 mutation in a family with congenital zonular nuclear pulverulent cataract of Pakistani origin. Hum. Genet. 105, 168–170.

    Article  PubMed  CAS  Google Scholar 

  • Blixt A., Mahlapuu M., Aitola M., Pelto-Huikko M., Enerbäck S. and Carlsson P. 2000 A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 14, 245–254.

    PubMed  CAS  Google Scholar 

  • Brady J. P., Garland D., Duglass-Tabor Y., Robison Jr W. G., Groome A. and Wawrousek E. F. 1997 Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein αBcrystallin. Proc. Natl. Acad. Sci. USA 94, 884–889

    Article  PubMed  CAS  Google Scholar 

  • Brady J. P., Garland D. L., Green D. E., Tamm E. R., Giblin F. J. and Wawrousek E. F. 2001 αB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest. Ophthalmol. Vis. Sci. 42, 2924–2934.

    PubMed  CAS  Google Scholar 

  • Brakenhoff R. H., Aarts H. J. M., Reek F. H., Lubsen N. H. and Schoenmakers J. G. G. 1990 Human γ-crystallin gene — a gene family on its way to extinction. J. Mol. Biol. 216, 519–532.

    Article  PubMed  CAS  Google Scholar 

  • Bu L., Jin Y., Shi Y., Chu R., Ban A., Eiberg H. et al. 2002 Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat. Genet. 31, 276–278.

    Article  PubMed  CAS  Google Scholar 

  • Bu L., Yan S., Jin M., Jin Y., Yu C., Xiao S. et al. 2002 The γS-crystallin gene is mutated in autosomal recessive cataract in mouse. Genomics 80, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Cartier M., Breitman M. L. and Tsui L. C. 1992 A frameshift mutation in the γE-crystallin gene of the Elo mouse. Nat. Genet. 2, 42–45.

    Article  PubMed  CAS  Google Scholar 

  • Chambers C. and Russell P. 1991 Deletion mutation in an eye lens β-crystallin. J. Biol. Chem. 266, 6742–6746.

    PubMed  CAS  Google Scholar 

  • Chan A. W. H., Ho Y.-S., Chung S. K. and Chung S. S. M. 2008 Synergistic effect of osmotic and oxidative stress in slowdeveloping cataract formation. Exp. Eye Res. 87, 454–461.

    Article  PubMed  CAS  Google Scholar 

  • Chang B., Hawes N. L., Roderick T. H., Smith R. S., Heckenlively J. R., Horwitz J. and Davisson M. T. 1999 Identification of a missense mutation in the αA-crystallin gene of the lop18 mouse. Mol. Vis. 5, 21.

    PubMed  CAS  Google Scholar 

  • Chang B., Wang X., Hawes N. L., Ojakian R., Davisson M. T., Lo W. K. and Gong X. 2002 A Gja8 (Cx50) point mutation causes an alteration of α3 connexin (Cx46) in semi-dominant catatacts of Lop10 mice. Hum. Mol. Genet. 11, 507–513.

    Article  PubMed  CAS  Google Scholar 

  • Chepelinsky A. B. 2009 Structural function of MIP/Aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. In Aquaporins (ed. E. Beitz). Handb. Exp. Pharmacol. 190, 265–297.

  • Cheong C., Sung, Y. H., Lee J., Choi Y. S., Song J., Kee C. and Lee H. W. 2006 Role of INK4a locus in normal eye development and cataract genetics. Mech. Ageing Dev. 127, 633–638.

    Article  PubMed  CAS  Google Scholar 

  • Clark A. T., Goldowitz D., Takahashi J. S., Vitaterna M. H., Siepka S. M., Peters L. L. et al. 2004 Implementing large-scale ENU mutagenesis screens in North America. Genetica 122, 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Conley Y. P., Erturk D., Keverline A., Mah T. S., Keravala A., Barnes L. R. et al. 2000 A juvenile-onset, progressive cataract locus on chromosome 3q21q22 is associated with a missense mutation in the beaded filament structural protein-2. Am. J. Hum. Genet. 66, 1426–1431.

    Article  PubMed  CAS  Google Scholar 

  • Cooper M. A., Son A. I., Komlos D., Sun Y., Kleiman N. J. and Zhou R. 2008 Loss of ephrin-A5 function disrupts lens fibre cell packing and leads to cataract. Proc. Natl. Acad. Sci. USA 105, 16620–16625.

    Article  PubMed  Google Scholar 

  • Cooper M. A., Kobayashi K. and Zhou R. 2009 Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathways. Develop. Neurobiol. 69, 36–46.

    Article  CAS  Google Scholar 

  • Dahl K., Buschard K., Gram D. X., dApice A. J. F. and Hansen A. K. 2006 Glucose intolerance in a xenotransplantation model: studies in alpha-gal knockout mice. APMIS 114, 805–811.

    Article  PubMed  CAS  Google Scholar 

  • Dahm R., van Marle J., Prescott A. R. and Quinlan R. A. 1999 Gap junctions containing α8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens. Exp. Eye Res. 69, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Davis L. K., Meyer K. J., Rudd D. S., Librant A. L., Epping E. A., Sheffield V. C. and Wassink T. H. 2008 Pax6 3 deletion results in aniridia, autism and mental retardation. Hum. Genet. 123, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • DeRosa A. M., Xia C. H., Gong X. and White T. W. 2007 The cataract-inducing S50P mutation in Cx50 dominantly alters the channel gating of wild-type lens connexins. J. Cell Sci. 120, 4107–4116.

    Article  PubMed  CAS  Google Scholar 

  • Devi R. R., Yao W., Vijayalakshmi P., Sergeev Y. V., Sundaresan P. and Hejtmancik J. F. 2008 Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol. Vis. 14, 1157–1170.

    PubMed  CAS  Google Scholar 

  • DuPrey K. M., Robinson K. M., Wang Y., Taube J. R. and Duncan M. K. 2007 Subfertility in mice harboring a mutation in βB2-crystallin. Mol. Vis. 13, 366–373.

    PubMed  CAS  Google Scholar 

  • Ehling U. H., Charles D. J., Favor J., Graw J., Kratochvilova J., Neuhäuser-Klaus A. and Pretsch W. 1985 Induction of gene mutations in mice: the multiple endpoint approach. Mutat. Res. 150, 393–401.

    PubMed  CAS  Google Scholar 

  • Everett C. A., Glenister P. H., Taylor D. M., Lyon M. F., Kratochvilova-Löster J. and Favor J. 1994 Mapping of six dominant cataract genes in the mouse. Genomics 20, 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Favor J. 1984 Characterization of dominant cataract mutations in mice: penetrance, fertility and homozygous viability of mutations recovered after 250 mg/kg ethylnitrosourea paternal treatment. Genet. Res. 44, 183–197.

    Article  PubMed  CAS  Google Scholar 

  • Favor J., Grimes P., Neuhäuser-Klaus A., Pretsch W. and Stambolian D. 1997 The mouse Cat4 locus maps to chromosome 8 and mutants express lens-corneal adhesion. Mamm. Genome 8, 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Favor J., Gloeckner C. J., Neuhäuser-Klaus A., Pretsch W., Sandulache R., Saule S. and Zaus I. 2008 Relationship of Pax6 activity levels to the extent of eye development in the mouse, Mus musculus. Genetics 179, 1345–1355.

    Article  PubMed  CAS  Google Scholar 

  • Forshew T., Johnson C. A., Khaliq S., Pasha S., Willis C., Abbasi R. et al. 2005 Locus heterogeneity in autosomal recessive congenital cataracts: linkage to 9q and germline HSF4 mutations. Hum. Genet. 117, 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Fraser F. C. and Schabtach G. 1962 ’shrivelled’: a hereditary degeneration of the lens in the house mouse. Genet. Res. 3, 383–387.

    Article  Google Scholar 

  • Fritz A., Walch A., Piotrowska K., Roseman M., Schäffer E., Weber K. et al. 2002 Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res. 62, 3048–3051.

    PubMed  CAS  Google Scholar 

  • Ganguly K., Favor J., Neuhäuser-Klaus A., Sandulache R., Puk O., Beckers J. et al. 2008 Novel allele of Crybb2 in the mouse and its expression in the brain. Invest. Ophthalmol. Vis. Sci. 49, 1533–1541.

    Article  PubMed  Google Scholar 

  • Gao Y. and Spray D. C. 1998 Structural changes in lenses of mice lacking the gap junction protein connexin43. Invest. Ophthalmol. Vis. Sci. 39, 1198–1209.

    PubMed  CAS  Google Scholar 

  • Gong X., Li E., Klier G., Huang Q., Wu Y., Lei H. et al. 1997 Disruption of α3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833–843.

    Article  PubMed  CAS  Google Scholar 

  • Gong X., Agopian K., Kumar N. M., and Gilula N. B. 1999 Genetic factors influence cataract formation in α3 connexin knockout mice. Dev. Genet. 24, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Graw J. 2003 The genetic and molecular basis of congenital eye defects. Nat. Rev. Genet. 4, 877–888.

    Article  CAS  Google Scholar 

  • Graw J. 2004 Congenital hereditary cataracts. Int. J. Dev. Biol. 48, 1031–1044

    Article  PubMed  CAS  Google Scholar 

  • Graw J. 2009 Genetics of crystallins: Cataract and beyond. Exp. Eye Res. 88, 173–189.

    Article  PubMed  CAS  Google Scholar 

  • Graw J., Kratochvilova J. and Summer K.-H. 1984 Genetical and biochemical studies of a dominant cataract mutant in mice. Exp. Eye Res. 39, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Graw J. and Liebstein A. 1993 DNase activity in murine lenses: implications for cataractogenesis. Graefe’s Arch. Clin. Exp. Ophthalmol. 231, 354–358.

    Article  CAS  Google Scholar 

  • Graw J., Reitmeir P. and Wulff A. 1990a Osmotic state of lenses in three dominant murine cataract mutants. Graefe’s Arch. Clin. Exp. Ophthalmol. 228, 252–254.

    Article  CAS  Google Scholar 

  • Graw J., Werner T., Merkle S., Reitmaier P., Schäffer E. and Wulff A. 1990b Histological and biochemical characterization of the murine cataract mutant Nop. Exp. Eye Res. 50, 449–456.

    Article  PubMed  CAS  Google Scholar 

  • Graw J., Löster J., Soewarto D., Fuchs H., Meyer B., Reis A. et al. 2001a Characterization of a new, dominant V124E mutation in the mouse αA-crystallin-encoding gene. Invest. Ophthalmol. Vis. Sci. 42, 2909–2913

    PubMed  CAS  Google Scholar 

  • Graw J., Löster J., Soewarto D., Fuchs H., Meyer B., Reis A. et al. 2001b Characterization of a mutation in the lens-specific MP70 encoding gene of the mouse leading to a dominant cataract. Exp. Eye Res. 73, 867–876.

    Article  PubMed  CAS  Google Scholar 

  • Graw J., Löster J., Soewarto D., Fuchs H., Reis A., Wolf E. et al. 2001c Aey2, a new mutation in the βB2-crystallin-encoding gene in the mouse. Invest. Ophthalmol. Vis. Sci. 42, 1574–1580

    PubMed  CAS  Google Scholar 

  • Graw J., Neuhäuser-Klaus A., Klopp N., Selby P. B., Löster J. and Favor J. 2004 Genetic and allelic heterogeneity of Cryg mutations in eight distinct forms of dominant cataract in the mouse. Invest. Ophthalmol. Vis. Sci. 45, 1202–1213

    Article  PubMed  Google Scholar 

  • Grimes P. A., Koeberlein B., Favor J., Neuhäuser-Klaus A. and Stambolian D. 1998 Abnormal development associated with Cat4a, a dominant mouse cataract mutation on chromosome 8. Invest. Ophthalmol. Vis. Sci. 39, 1863–1869.

    PubMed  CAS  Google Scholar 

  • Hammond C. J., Snieder H., Spector T. D. and Gilbert C. E. 2000 Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N. Engl. J. Med. 342, 1786–1790.

    Article  PubMed  CAS  Google Scholar 

  • Hammond C. J., Duncan D. D., Snieder H., de Lange M., West S. K., Spector T. D. and Gilbert C. E. 2001 The heritability of agerelated cortical cataract: the twin eye study. Invest. Ophthalmol. Vis. Sci. 42, 601–605.

    PubMed  CAS  Google Scholar 

  • Hansen L., Mikkelsen A., Nürnbereg P., Nürnberg G., Anjum I., Eiberg H. and Rosenberg T. 2009. Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract. Invest. Ophthalmol. Vis. Sci. 50, 3291–3303.

    Article  PubMed  Google Scholar 

  • Hill R. E., Favor J., Hogan B. L. M., Ton C. C. T., Saunders G. F., Hanson I. M. et al. 1991 Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525

    Article  PubMed  CAS  Google Scholar 

  • Hong H. K., Lass J. H. and Chakravarti A. 1999 Pleiotropic skeletal and ocular phenotypes of the mouse mutation congenital hydrocephalus (ch/Mf1) arise frome a winged helix/forkhead transcription factor gene. Hum. Mol. Genet. 8, 625–637.

    Article  PubMed  CAS  Google Scholar 

  • Hrabé de Angelis M., Flaswinkel H., Fuchs H., Rathkolb B., Soewarto D et al. 2000 Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 25, 1–4.

    Article  CAS  Google Scholar 

  • Huang K. M., Wu J., Duncan M. K., Moy C., Dutra A., Favor J. et al. 2006 Xcat, a novel mouse model for NanceHoran syndrome inhibits expression of the cytoplasmic-targeted Nhs1 isoform. Hum. Mol. Genet. 15, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Hwang D.-Y., Ardayfio P., Kang U. J., Semina E. V. and Kim K.-S. 2003 Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Mol. Brain Res. 114, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Jakobs P. M., Hess J. F., FitzGerald P. G., Kramer P., Weleber R. G. and Litt M. 2000 Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein BFSP2. Am. J. Hum. Genet. 66, 1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Jamieson R. V., Perveen R., Kerr B., Carette M., Yardley J., Héon E. et al. 2002 Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum. Mol. Genet. 11, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J. X., White T. W. and Goodenough D. A. 1995 Changes in connexin expression and distribution during chick lens development. Dev. Biol. 168, 649–661.

    Article  PubMed  CAS  Google Scholar 

  • Johnson G. J. and Foster A. 2004 Prevalence, incidence and distribution of visual impairment. In The epidemiology of eye disease (ed. G. J. Johnson, D. C. Minassian, R. A. Weale and S. K. West), pp. 3–28. Arnold, London, UK.

    Google Scholar 

  • Jun G., Guo H., Klein B. E. K., Klein R., Wang J. J., Mitchell P. et al. 2009 EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 5, e1000584.

    Article  PubMed  CAS  Google Scholar 

  • Kamachi Y., Uchikawa M., Collignon J., Lovell-Badge R. and Kondoh H. 1998 Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521–2532.

    PubMed  CAS  Google Scholar 

  • Kamachi Y., Uchikawa M. and Kondoh H. 2000 Pairing SOX off with partners in the regulation of embryonic development. Trends Genet. 16, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Ke T., Wang Q. K., Ji B., Wang X., Liu P., Zhang X. et al. 2006 Novel HSF4 mutation causes congenital total white cataract in a Chinese family. Am. J. Ophthalmol. 142, 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Kerscher S., Glennister P. H., Favor J. and Lyon M. F. 1996 Two new cataract loci, Ccw and To3, and further mapping of the Npp and Opj cataracts in the mouse. Genomics 36, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Khan A. O., Aldahmesh M. A. and Meyer B. 2007 Recessive congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C). Am. J. Ophthalmol. 144, 949–952.

    Article  PubMed  CAS  Google Scholar 

  • Klopp N., Favor J., Löster J., Lutz R. B., Neuhäuser-Klaus A., Prescott A. et al. 1998 Three murine cataract mutants (Cat2) are defective in different ?-crystallin genes. Genomics 52, 152–158

    Article  PubMed  CAS  Google Scholar 

  • Koopman P. 1999 Sry and Sox9: mammalian testis-determining genes. Cell. Mol. Life Sci. 55, 839–856.

    PubMed  CAS  Google Scholar 

  • Kratochvilova J. and Ehling U. H. 1979 Dominant cataract mutations induced by γ-irradiation of male mice. Mutat. Res. 63, 221–223.

    PubMed  CAS  Google Scholar 

  • Kuck J. F. R. 1990 Late onset hereditary cataract of the Emory mouse: a model for human senile cataract. Exp. Eye Res. 50, 659–664.

    Article  PubMed  CAS  Google Scholar 

  • Kuck J. F. R., Kuwabara T. and Kuck K. D. 1981 The Emory mouse cataract: an animal model for human senile cataract. Curr. Eye Res. 1, 643–649.

    Article  PubMed  Google Scholar 

  • Kuwabara T. and Imaizumi M. 1974 Denucleation process of the lens. Invest. Ophthalmol. 13, 973–981.

    PubMed  CAS  Google Scholar 

  • Liedtke T., Schwamborn J. C., Schröer U. and Thanos S. 2007. Elongation of axons during regeneration involves retinal crystallin b2 (crybb2). Mol. Cell. Prot. 6, 895–907.

    Article  CAS  Google Scholar 

  • Liu X. Y., Dangel A.W., Kelley R. I., Zhao W., Denny P., Botcherby M. et al. 1999 The gene mutated in bare patches and sdtriated mice encodes a novel 3β-hydroxysteroid dehydrogenase. Nat. Genet. 22, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Lyon M. F., Jarvis S. E., Sayers I. and Holmes R. S. 1981 Lens opacity: a new gene for congenital cataract on chromosome 10 of the mouse. Genet. Res. 38, 337–341.

    Article  PubMed  CAS  Google Scholar 

  • Lyon M. F., Jamieson R. V., Perveen R., Glenister P. H., Griffiths R., Boyd Y. et al. 2003 A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Hum. Mol. Genet. 12, 585–594.

    Article  PubMed  CAS  Google Scholar 

  • Magabo K. S., Horwitz J., Piatigorsky J and Kantorow M. 2000 Expression of βB2-crystallin mRNA and protein in retina, brain and testis. Invest. Ophthalmol. Vis. Sci. 41, 3056–3060.

    PubMed  CAS  Google Scholar 

  • Mansergh F. C., Wride M. A., Walker V. E., Adams, S., Hunter S. M. and Evans M. J. 2004 Gene expression changes during cataract progression in Sparc null mice: Differential regulation of mouse globins in the lens. Mol. Vis. 10, 490–511.

    PubMed  CAS  Google Scholar 

  • Matsuo T., Osumi-Yamashita N., Noji S., Ohuchi H., Koyama E., Myokai F. et al. 1993 A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet. 3, 229–304.

    Article  Google Scholar 

  • Moré M. I., Kirsch F. P. and Rathjen F. G. 2001 Targeted ablation of NrCAM or ankyrin-B results in disorganized lens fibres leading to cataract formation. J. Cell Biol. 154, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Moseley A., Graw J. and Delamere N. A. 2002 Altered Na, KATPase pattern in γ-crystallin mutant mice. Invest. Ophthalmol. Vis. Sci. 43, 1517–1519.

    PubMed  Google Scholar 

  • Mou L., Xu J. Y., Li W., Lei X., Wu Y., Xu G. et al. 2009 Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Invest. Ophthalmol. Vis. Sci. (in press).

  • Muggleton-Harris A. L., Festing M. F.W. and Hall M. 1987 A gene location for the inheritance of the cataract Fraser (CatFr) mouse congenital cataract. Genet. Res. 49, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi S., Wood H., Kondoh H., Lovell-Badge R. and Episkopou V. 1998 Sox1 directly regulates the γ-crystallin gene and is essential for lens development in mice. Genes Dev. 12, 776–781.

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto H., Uga S., Miyata M., Ishikawa S. and Yamashita K. 1993 Morphological study of the cataractous lens of the senescence accelerated mouse. Graefe’s Arch. Clin. Exp. Ophthalmol. 231, 722–728

    Article  CAS  Google Scholar 

  • Nishimura D. Y., Searby C. C., Alward W. L., Walton D., Craig J. E., Mackey D. A. et al. 2001 A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am. J. Hum. Genet. 68, 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa M., Kataoka K., Goto N., Fujiwara K. T. and Kawai S. 1989 v-maf, a viral oncogene that encodes a ‘leucine zipper’ motif. Proc. Natl. Acad. Sci. USA 86, 7711–7715.

    Article  PubMed  CAS  Google Scholar 

  • Norose K., Clark J. I., Syed N. A., Basu A., Heber-Katz E., Sage E. H. and Howe C. C. 1998 SPARC deficiency leads to early-onset cataractogenesis. Invest. Ophthalmol. Vis. Sci. 39, 2674–2680.

    PubMed  CAS  Google Scholar 

  • Nunes I., Tovmasian L. T., Silva R. M., Burke R. E. and Goff S. P. 2003 Pitx3 is required for development of substantia nigra dopam inergic neurons. Proc. Natl. Acad. Sci. USA 100, 4245–4250.

    Article  PubMed  CAS  Google Scholar 

  • Ogino H. and Yasuda K. 1998 Induction of lens diffedrentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T., Miyoshi I., Takahashi K., Mototani Y., Ishigaki S., Kon Y. and Kasai N. 2003 Bilateral congenital cataracts result from a gain-of-function mutation in the gene for aquaporin-0 in mice. Genomics 81, 361–368.

    Article  PubMed  CAS  Google Scholar 

  • Okano Y., Asada M., Fujimoto A., Ohtake A., Murayama K., Hsiao K. J. et al. 2001 A genetic factor for age-related cataract: Identification and characterization of a novel galactokinase variant, ‘Osaka,’ in Asians. Am. J. Hum. Genet. 68, 1036–1042.

    Article  PubMed  CAS  Google Scholar 

  • Pellegata N. S., Quintanilla-Martinez L., Siggelkow H., Samson E., Bink K., Höfler H. et al. 2006 Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl. Acad. Sci. USA 103, 15558–15563.

    Article  PubMed  CAS  Google Scholar 

  • Perveen R., Favor J., Jamieson R. V., Ray D. W. and Black G. C. M. 2007 A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation. Hum. Mol. Genet. 16, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Ponnam S. P. G., Ramesha K., Tejwani S., Matalia J. and Kannabiran C. 2008 A missense mutation in LIM2 causes autosomal recessive congenital cataract. Mol. Vis. 14, 1204–1208.

    PubMed  CAS  Google Scholar 

  • Pras E., Frydman M., Levy-Nisserbaum E., Bakhan T., Raz J., Assia E. I. et al. 2000 A nonsense mutation (W9x) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest. Ophthalmol. Vis. Sci. 41, 3511–3575.

    PubMed  CAS  Google Scholar 

  • Pras E., Levy-Nissenbaum E., Bakhan T., Lahat H., Assia E., Geffen-Carmi N. et al. 2002 A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am. J. Hum. Genet. 70, 1363–1367.

    Article  PubMed  CAS  Google Scholar 

  • Puk O., Löster J., Dalke C., Soewarto D., Fuchs H., Budde B. et al. 2008 Mutation in a novel connexin-like gene (Gjf1) in the mouse affects early lens development and causes a variable small-eye phenotype. Invest. Ophthalmol. Vis. Sci. 49, 1525–1532.

    Article  PubMed  Google Scholar 

  • Ramachandran R. D., Perumalsamy V. and Hejtmancik J. F. 2007 Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum. Genet. 121, 475–482.

    Article  PubMed  CAS  Google Scholar 

  • Reaume A. G., de Sousa P. A., Kulkarni S., Langille B. L., Zhu D., Davies T. C. et al. 1995 Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–1834.

    Article  PubMed  CAS  Google Scholar 

  • Rieger D. K., Reichenberger E., McLean W., Sidow A. and Olsen B. R. 2001 A double-deletion mutation in the Pitx3 gene causes arrested lens deveopment in aphakia mice. Genomics 72, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Ring B. Z., Cordes S. P., Overbeek P. A. and Barsh G. S. 2000 Regulation of mouse lens fibre cell development and differentiation by the Maf gene. Development 127, 307–317.

    PubMed  CAS  Google Scholar 

  • Robinson M. L. and Overbeek P. A. 1996 Differential expression of αA- and αB-crystallins during murine ocular development. Invest. Ophthalmol. Vis. Sci. 37, 2276–2284

    PubMed  CAS  Google Scholar 

  • Rossi M., Morita H., Sormunen R., Airenne S., Kreivi M., Wang L. et al. 2003 Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Sajjad N., Goebel I., Kakar N., Cheema A. M., Kubisch C. and Ahmad J. 2008 A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan. BMC Med. Genet. 9, 99 (doi:10.1186/147I-2350-9-99).

    Article  PubMed  CAS  Google Scholar 

  • Sandilands A., Hutcheson A. M., Long H. A., Prescott A. R., Vrensen G., Löster J. et al. 2002 Altered aggregation properties of mutant γ-crystallins cause inherited cataract. EMBO J. 21, 6005–6014

    Article  PubMed  CAS  Google Scholar 

  • Sandilands A., Prescott A. R., Wegener A., Zoltoski R. K., Hutcheson A.M., Masaki S. et al. A. 2003 Knockout of the intermediate filament protein CP49 destabilises the lens fibre cytoskeleton and decreases lens optical quality, but does not induce cataract. Exp. Eye Res. 76, 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Sandilands A., Wang X., Hutcheson A. M., James J., Prescott A. R., Wegener A. et al. 2004 Bfsp2 mutation found in mouse 129 strains causes the loss of CP49 and induces vimentin-dependent changes in the lens fibre cell cytoskeleton. Exp. Eye Res. 78, 875–889.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P. S., Appukuttan B., Han J., Ito Y., Ai C., Tsai W. et al. 2000 Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat. Genet. 25, 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Semina E. V., Ferrell R. E., Mintz-Hittner H. A., Bitoun P., Alward W. L. M., Reiter R. S. et al. 1998 A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat. Genet. 19, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Semina E., Murray J. C., Reiter R., Hrstka R. F. and Graw J. 2000 Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet. 9, 1575–1585.

    Article  PubMed  CAS  Google Scholar 

  • Semina E. V., Brownell I., Mintz-Hittner H. A., Murray J. C. and Jamrich M. 2001 Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum. Mol. Genet. 10, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Sheets N. L., Chauhan B. K., Wawrousek E., Hejtmancik J. F., Cvekl A. and Kantorow M. 2002 Cataract- and lens-specific upregulation of ARK receptor tyrosine kinase in Emory mouse cataract. Invest. Ophthalmol. Vis. Sci. 43, 1870–1875.

    PubMed  Google Scholar 

  • Shi Y., Shi X., Jin Y., Miao A., Bu L., He J. et al. 2008 Mutation screening of HSF4 in ISO age-related cataract patients Mol. Vis. 14, 1850–1855.

    CAS  Google Scholar 

  • Smaoui N., Beltaief O., BenHamed S., MRad R., Maazoul F., Ouertani A. et al. 2004 A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest. Ophthalmol. Vis. Sci. 45, 2716–2721. Shi X., Cui B., Wang Z., Weng L., Xu Z., Ma J. et al. 2009 Removal of Hsf4 leads to cataract development in mice through down-regulation of γS-crystallin and Bfsp expression. BMC Mol. Biol. 10 (doi: 10.1186/1471-2199-10-10).

    Article  PubMed  Google Scholar 

  • Shiels A. and Griffin C. S. 1993 Aberrant expression of the gene for lens major intrinsic protein in the CAT mouse. Curr. Eye Res. 12, 913–921.

    Article  PubMed  CAS  Google Scholar 

  • Shiels A. and Bassnett S. 1996 Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat. Genet. 12, 212–215.

    Article  PubMed  CAS  Google Scholar 

  • Shiels A., Mackay D., Ionides A., Berry V., Moore A. and Bhattacharya S. 1998 A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant’ zonular pulverulent’ cataract, on chromosome 1q. Am. J. Hum. Genet. 62, 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Shiels A., Bennett T. M., Knopf H. L. S., Maraini G., Li A., Jiao X. and Hejtmancik J. F. 2008 The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol. Vis. 14, 2042–2055.

    PubMed  CAS  Google Scholar 

  • Shimada N., Aya-Murata T., Reza H.M. and Yasuda K. 2003 Cooperative action between L-Maf and Sox2 on δ-crystallin gene expression during chick lens development. Mech. Dev. 120, 455–465.

    Article  PubMed  CAS  Google Scholar 

  • Sinha D., Wyatt M. K., Sarra R., Jaworski C., Slingsby C., Thaung C., Pannell L. et al. 2001 A temperature-sensitive mutation of Crygs in the murine Opj cataract. J. Biol. Chem. 276, 9308–9315.

    Article  PubMed  CAS  Google Scholar 

  • Smidt M. P., Smits S. M., Bouwmeester H., Hamers F. P. T., van der Linden A. J. A., Hellemons A. J. C. G. M., et al. 2004 Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  • Smith R. S., Johnson K. R., Hawes N. L., Harris B. S., Sundberg J. P. and Davisson M. T. 1999 Lens epithelial proliferation cataract in segmental trisomy involving mouse chromosomes 4 and 17. Mamm. Genome 10, 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Spemann H. 1924 Über Organisatoren in der tierischen Entwicklung. Naturwissenschaften 48, 1092–1094.

    Article  Google Scholar 

  • Steele E. C., Kerscher S., Lyon M. F., Glenister P. H., Favor J., Wang J. H. and Church R. L. 1997 Identification of a mutation in the MP19 gene, Lim2, in the cataractous mouse mutant To3. Mol. Vis. 3, 5.

    PubMed  Google Scholar 

  • Steele Jr E. C., Lyon M. F., Favor J., Guillot P. V., Boyd Y. and Church R. L. 1998 A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr. Eye Res. 17, 883–889.

    Article  PubMed  Google Scholar 

  • Stout C., Goddenough D. A. and Paul D. L. 2004 Connexins: functions without junctions. Curr. Opin. Cell Biol. 16, 507–512. Takahasi K. R., Sakuraba Y. and Gondo Y. 2007 Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol. Biol. 8, 52; (doi: 10.1186/1471-2199-8-52).

    Article  PubMed  CAS  Google Scholar 

  • Thaung C., West K., Clark B. J., McKie L., Morgan J. E., Arnold K. et al. 2002 Novel ENU-induced eye mutations in the mouse: models for human eye disease. Hum. Mol. Genet. 11, 755–767.

    Article  PubMed  CAS  Google Scholar 

  • Tsonis P. A. and Fuentes E. J. 2006 Focus on molecules: Pax-6, the eye master. Exp. Eye Res. 83, 233–234.

    Article  PubMed  CAS  Google Scholar 

  • van Agtmael T., Schlötzer-Schrehardt U., McKie L., Brownstein D. G., Lee A. W., Cross S. H. et al. 2005 Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum. Mol. Genet. 14, 3161–3168.

    Article  PubMed  Google Scholar 

  • Varnum D. S. and Stevens L. C. 1968 Aphakia, a new mutation in the mouse. J. Hered. 59, 147–150.

    PubMed  CAS  Google Scholar 

  • Vrensen G. F. J. M., Graw J. and de Wolf A. 1991 Nuclear breakdown during terminal differentiation of primary lens fibres in mice: a transmission electron microscopic study. Exp. Eye Res. 52, 647–659.

    Article  PubMed  CAS  Google Scholar 

  • West S. K. 2000 Looking forward to 20/20: a focus on the epidemiology of eye diseases. Epidemiol. Rev. 22, 64–70.

    PubMed  CAS  Google Scholar 

  • White T. W. 2002 Unique and redundant connexin contributions to lens development. Science 295, 319–320.

    Article  PubMed  CAS  Google Scholar 

  • White T.W., Goodenough D. A. and Paul D. L. 1998 Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J. Cell Biol. 143, 815–825.

    Article  PubMed  CAS  Google Scholar 

  • White T. W., Sellito C., Paul D. L. and Goodenough D. A. 2001 Prenatal lens development in connexin43 and connexin50 double knockout mice. Invest. Ophthalmol. Vis. Sci. 42, 2916–2923.

    PubMed  CAS  Google Scholar 

  • Wistow G., Wyatt K., David L., Gao C., Bateman O., Bernstein S. et al. 2005 N-crystallin and the evolution of the βγ-crystallin superfamily in vertebrates. FEBS J. 272, 2276–2291.

    Article  PubMed  CAS  Google Scholar 

  • Wolf N., Pendergrass W., Singh N., Swisshelm K. and Schwartz J. 2008 Radiation cataracts: mechanisms involved in their long delayed occurrence but then rapid progression. Mol. Vis. 14, 274–285.

    PubMed  CAS  Google Scholar 

  • Worgul B. V., Smilenov L., Brenner D. J., Junk A., Zhou W. and Hall E. J. 2002 Atm heterozygous mice are more sensitive to radiation-induced cataracts than their wild-type counterparts. Proc. Natl. Acad. Sci. USA 99, 9836–9839.

    Article  PubMed  CAS  Google Scholar 

  • Xia C., Liu H., Chang B., Cheng C., Cheung D., Wang M. et al. 2006 Arginine 54 and tyrosine 118 residues of αA-crystallin are crucial for lens formation and transparency. Invest. Ophthalmol. Vis. Sci. 47, 3004–3010.

    Article  PubMed  Google Scholar 

  • Yancey S. B., Biswal S. and Revel J.-P. 1992 Spatial and temporal patternms of distribution of the gap junction protein connexin43 during mouse gastrulation and organogenesis. Development 114, 203–212.

    PubMed  CAS  Google Scholar 

  • Yang Y.-G., Frappart P.-O., Frappart L., Wang Z.-Q. and Tong W.-M. 2006 A novel function of DNA repair molecule Nbs1 in terminal differentiation of the lens fibre cells and cataractogenesis. DNA Repair 5, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Zhang T., Hua R., Xiao W., Burdon K. P., Bhattacharya S. S., Craig J. E. et al. 2009 Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum. Mutat. Mutation in Brief 30, E603–E611.

    Article  Google Scholar 

  • Zhou L., Chen T. and Church R. L. 2002 Temporal expression of three mouse lens fibre cell membrane protein genes during early development. Mol. Vis. 8, 143–148.

    PubMed  CAS  Google Scholar 

  • Zwaan J. and Williams R. M. 1969 Cataracts and abnormal proliferation of the lens epithelium in mice carrying the CatFr gene. Exp. Eye Res. 8, 161–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Graw.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12041-010-0004-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graw, J. Mouse models of cataract. J Genet 88, 469–486 (2009). https://doi.org/10.1007/s12041-009-0066-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0066-2

Keywords

Navigation