Skip to main content
Log in

Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To review the diagnostic performance of MR coronary angiography (MRCA) for coronary artery disease (CAD).

Methods

Two independent reviewers searched on MEDLINE/EMBASE with the following inclusion criteria: 01/01/2000-03/23/2015 publication date; per-patient sensitivity/specificity for >50 % stenosis confirmed by conventional coronary angiography with raw data provided or retrievable; sample size >10. Quality was appraised using QUADAS2.

Results

Nine hundred eighteen studies were retrieved, 24 of them, including 1,638 patients, were selected. Using a bivariate model, the pooled sensitivity was 89 % (95 % confidence interval 86–92 %), the pooled specificity 72 % (63–79 %). Meta-regression did not show a significant impact on sensitivity/specificity for both year of publication and disease prevalence (p ≥ 0.114). Sensitivity of contrast-enhanced examinations (95 %, 90–97 %) was higher (p = 0.005) than that of unenhanced examinations (87 %, 83–90 %). Specificity of whole-heart acquisition mode (78 %, 72–84 %) was higher (p = 0.006) than that of targeted mode (57 %, 45–69 %). Specificity at 3 T (83 %, 69–92 %) was higher (p = 0.067) than that at 1.5 T (68 %, 60–76 %). Risk of bias and concerns regarding applicability were low.

Conclusions

Sensitivity and specificity of MRCA for CAD were 89 % and 72 %, respectively. A specificity higher than 80 % may be obtained at 3 T. Whole-heart contrast-enhanced protocols should be preferred for a higher diagnostic performance.

Key Points

MRCA sensitivity and specificity for CAD are below those of CTA.

Contrast administration increased sensitivity to 95 % (9097 %), comparable with that of CTA.

Whole-heart mode increased specificity to 78 % (7284 %), comparable with that of CTA.

Specificity at 3 T was borderline-significantly higher (p = 0.067) than at 1.5 T.

Whole-heart contrast-enhanced protocols are the best approach for MRCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fihn SD, Gardin JM, Abrams J et al (2012) 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the american college of cardiology foundation/american heart association task force on practice guidelines, and the american college of physicians, american association for thoracic surgery, preventive cardiovascular nurses association, society for cardiovascular angiography and interventions, and society of thoracic surgeons. American college of cardiology foundation/american heart association task force. J Am Coll Cardiol 60:e44–e164

    Article  PubMed  Google Scholar 

  2. Min JK, Gilmore A, Budoff MJ, Berman DS, O'Day K (2010) Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology 254:801–808

    Article  PubMed  Google Scholar 

  3. Mark DB, Berman DS, Budoff MJ et al (2010) ACCF/ACR/AHA/NASCI/ SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American college of cardiology foundation task force on expert consensus documents. Circulation 121:2509–2543

    Article  PubMed  Google Scholar 

  4. Pelliccia F, Pasceri V, Evangelista A et al (2013) Diagnostic accuracy of 320-row computed tomography as compared with invasive coronary angiography in unselected, consecutive patients with suspected coronary artery disease. Int J Cardiovasc Imaging 29:443–452

    Article  CAS  PubMed  Google Scholar 

  5. Kim SM, Chang SA, Shin W, Choe YH (2014) Dual-energy CT perfusion during pharmacologic stress for the assessment of myocardial perfusion defects using a second-generation dual-source CT: a comparison with cardiac magnetic resonance imaging. J Comput Assist Tomogr 38:44–52

    Article  PubMed  Google Scholar 

  6. Min JK, Shaw LJ, Berman DS (2010) The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol 55:957–965

    Article  PubMed  Google Scholar 

  7. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

    Article  CAS  PubMed  Google Scholar 

  8. Sabarudin A, Sun Z (2013) Coronary CT angiography: diagnostic value and clinical challenges. World J Cardiol 5:473–483

    PubMed  PubMed Central  Google Scholar 

  9. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  10. Hamon M, Biondi-Zoccai GG, Malagutti P et al (2006) Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol 48:1896–1910

    Article  PubMed  Google Scholar 

  11. Janne d’Othée B, Siebert U, Cury R, Jadvar H, Dunn EJ, Hoffmann U (2008) A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol 65:449–461

    Article  PubMed  Google Scholar 

  12. Meijboom WB, Meijs MF, Schuijf JD (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  13. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177

    Article  PubMed  Google Scholar 

  14. Schuhbaeck A, Achenbach S, Layritz C et al (2013) Image quality of ultra-low radiation exposure coronary CT angiography with an effective dose <0.1 mSv using high-pitch spiral acquisition and raw data-based iterative reconstruction. Eur Radiol 23:597–606

    Article  PubMed  Google Scholar 

  15. Cademartiri F, Maffei E, Arcadi T, Catalano O, Midiri M (2013) CT coronary angiography at an ultra-low radiation dose (<0.1 mSv): feasible and viable in times of constraint on healthcare costs. Eur Radiol 23:607–613

    Article  PubMed  Google Scholar 

  16. Coenen A, Lubbers MM, Kurata A et al (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274:674–683

    Article  PubMed  Google Scholar 

  17. Lieberman JM, Alfidi RJ, Nelson AD et al (1984) Gated magnetic resonance imaging of the normal and diseased heart. Radiology 152:465–470

    Article  CAS  PubMed  Google Scholar 

  18. Hundley WG, Bluemke DA, Finn JP et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American college of cardiology foundation task force on expert consensus documents. J Am Coll Cardiol 55:2614–2662

    Article  PubMed  Google Scholar 

  19. Anderson JL, Adams CD, Antman EM et al (2013) 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the american college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol 61:e179–e347

    Article  PubMed  Google Scholar 

  20. Constantine G, Shan K, Flamm SD, Sivananthan MU (2004) Role of MRI in clinical cardiology. Lancet 363:2162–2171

    Article  PubMed  Google Scholar 

  21. Kim WY, Danias PG, Stuber M et al (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    Article  CAS  PubMed  Google Scholar 

  22. Greenwood JP, Maredia N, Younger JF et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edelman RR, Manning W, Burstein D, Paulin S (1991) Coronary arteries: breath-hold MR angiography. Radiology 181:641–643

    Article  CAS  PubMed  Google Scholar 

  24. Li D, Kaushikar S, Haacke EM, Woodard PK et al (1996) Coronary arteries: three dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehmann RL (1996) Navigator-echo based real-time respiratory gating and triggering for reduction of respiratory effects in three-dimensional coronary MR angiography. Radiology 198:55–60

    Article  CAS  PubMed  Google Scholar 

  26. Stuber M, Botnar R, Danias PG (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34:524–531

    Article  CAS  PubMed  Google Scholar 

  27. Sardanelli F, Molinari G, Zandrino F, Balbi M (2000) Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology 214:808–814

    Article  CAS  PubMed  Google Scholar 

  28. Van Geuns RJ, Wielopolski PA, De Bruin HG et al (2000) MR coronary angiography with breath-hold targeted volumes: preliminary clinical results. Radiology 217:270–277

    Article  PubMed  Google Scholar 

  29. McCarthy RM, Shea SM, Deshpande VS et al (2003) Coronary MR angiography: true FISP imaging improved by prolonging breath holds with preoxygenation in healthy volunteers. Radiology 227:283–288

    Article  PubMed  Google Scholar 

  30. Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228

    Article  PubMed  Google Scholar 

  31. Chen Z, Duan Q, Xue X et al (2010) Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T. Cardiology 117:284–290

    PubMed  Google Scholar 

  32. Yang Q, Li K, Liu X et al (2012) 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 5:573–579

    Article  PubMed  PubMed Central  Google Scholar 

  33. Danias PG, Roussakis A, Ioannidis JP (2004) Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44:1867–1876

    PubMed  Google Scholar 

  34. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  35. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990

    Article  PubMed  Google Scholar 

  36. Borestein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester, pp 107–125

    Book  Google Scholar 

  37. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Austria. Available via http://www.r-project.org/. Accessed 23 Apr 2015

  38. Bogaert J, Kuzo R, Dymarkowski S, Beckers R, Piessens J, Rademakers FE (2003) Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: initial experience. Radiology 226:707–716

    Article  PubMed  Google Scholar 

  39. Hamdan A, Asbach P, Wellnhofer E et al (2011) A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 4:50–61

    Article  PubMed  Google Scholar 

  40. Pouleur AC, le Polain de Waroux JB, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging 1:114–121

    Article  PubMed  Google Scholar 

  41. Kunimasa T, Sato Y, Matsumoto N et al (2009) Detection of coronary artery disease by free-breathing, whole heart coronary magnetic resonance angiography: our initial experience. Heart Vessels 24:429–433

    Article  PubMed  Google Scholar 

  42. Yang Q, Li K, Liu X et al (2009) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 54:69–76

    Article  PubMed  PubMed Central  Google Scholar 

  43. Regenfus M, Ropers D, Achenbach S et al (2002) Comparison of contrast-enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography. Am J Cardiol 90:725–730

    Article  PubMed  Google Scholar 

  44. Wagner M, Rösler R, Lembcke A et al (2011) Whole-heart coronary magnetic resonance angiography at 1.5Tesla: does a blood-pool contrast agent improve diagnostic accuracy? Invest Radiol 46:152–159

    Article  CAS  PubMed  Google Scholar 

  45. Regenfus M, Ropers D, Achenbach S et al (2000) Noninvasive detection of coronary artery stenosis using contrastenhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36:44–50

    Article  CAS  PubMed  Google Scholar 

  46. Krittayaphong R, Mahanonda N, Kangkagate C, Nakyen S, Tanapibunpon P, Chaithiraphan S (2003) Accuracy of magnetic resonance imaging in the diagnosis of coronary artery disease. J Med Assoc Thai 86(Suppl 1):S59–S66

    PubMed  Google Scholar 

  47. Yang PC, Meyer CH, Terashima M et al (2003) Spiral magnetic resonance coronary angiography with rapid real-time localization. J Am Coll Cardiol 41:1134–1141

    Article  PubMed  Google Scholar 

  48. Ikonen AE, Manninen HI, Vainio P et al (2003) Three-dimensional respiratory-gated coronary MR angiography with reference to X-ray coronary angiography. Acta Radiol 44:583–589

    Article  CAS  PubMed  Google Scholar 

  49. Sakuma H, Ichikawa Y, Suzawa N et al (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 237:316–321

    Article  PubMed  Google Scholar 

  50. Kefer J, Coche E, Pasquet A et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patient. J Am Coll Cardiol 46:92–100

    Article  PubMed  Google Scholar 

  51. Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K (2006) Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 48:1946–1950

    Article  PubMed  Google Scholar 

  52. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    Article  PubMed  Google Scholar 

  53. McCarthy RM, Deshpande VS, Beohar N et al (2007) Three-dimensional breathhold magnetization-prepared TrueFISP: a pilot study for magnetic resonance imaging of the coronary artery disease. Invest Radiol 42:665–670

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maintz D, Ozgun M, Hoffmeier A et al (2007) Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiol 48:967–973

    Article  CAS  PubMed  Google Scholar 

  55. Klein C, Gebker R, Kokocinski T et al (2008) Combined magnetic resonance coronary artery imaging, myocardial perfusion and late gadolinium enhancement in patients with suspected coronary artery disease. J Cardiovasc Magn Reson 10:45

    Article  PubMed  PubMed Central  Google Scholar 

  56. Langer C, Peterschröder A, Franzke K et al (2009) Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr 33:179–185

    Article  PubMed  Google Scholar 

  57. Kato S, Kitagawa K, Ishida N et al (2010) Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol 56:983–991

    Article  PubMed  Google Scholar 

  58. Nagata M, Kato S, Kitagawa K et al (2011) Diagnostic accuracy of 1.5T unenhanced whole-heart coronary MR angiography performed with 32-channel cardiac coils: initial single-center experience. Radiology 259:384–392

    Article  PubMed  Google Scholar 

  59. Schuijf JD, Bax JJ, Shaw LJ et al (2006) Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J 151:404–411

    Article  PubMed  Google Scholar 

  60. Shaw LJ, Berman DS, Picard MH et al (2014) Comparative definitions for moderate-severe ischemia in stress nuclear, echocardiography, and magnetic resonance imaging. JACC Cardiovasc Imaging 7:593–604

    Article  PubMed  PubMed Central  Google Scholar 

  61. Heitner JF, Klem I, Rasheed D et al (2014) Stress cardiac MR imaging compared with stress echocardiography in the early evaluation of patients who present to the emergency department with intermediate-risk chest pain. Radiology 271:56–64

    Article  PubMed  Google Scholar 

  62. Saremi F, Achenbach S (2015) Coronary plaque characterization using CT. AJR Am J Roentgenol 204:W249–W260

    Article  PubMed  Google Scholar 

  63. Yang DH, Kim YH, Roh JH et al (2015) Stress myocardial perfusion CT in patients suspected of having coronary artery disease: visual and quantitative analysis-validation by using fractional flow reserve. Radiology 276:715–723

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been conducted within the framework of the Network for the Assessment of Imaging in Medicine (EuroAIM), research platform of the European Institute for Biomedical Research (http://www.eibir.org/scientific-activities/joint-initiatives/euroaim/). The scientific guarantor of this publication is Francesco Sardanelli. The authors of this manuscript declare relationships with the following companies: Bracco Imaging SpA and Bayer Healthcare AG. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was not required because this manuscript is a systematic review. Written informed consent was not required for this study because this manuscript is a systematic review. Methodology: systematic review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Di Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Leo, G., Fisci, E., Secchi, F. et al. Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis. Eur Radiol 26, 3706–3718 (2016). https://doi.org/10.1007/s00330-015-4134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4134-0

Keywords

Navigation