Skip to main content

Advertisement

Log in

Change in volume parameters induced by neoadjuvant chemotherapy provide accurate prediction of overall survival after resection in patients with oesophageal cancer

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the prognostic value of volumetric parameters measured with CT and PET/CT in patients with neoadjuvant chemotherapy (NACT) and resection for oesophageal cancer (EC).

Methods

Patients with locally advanced EC, who were treated with NACT and resection, were retrospectively analysed. Data from CT volumetry and 18 F-FDG PET/CT (maximum standardized uptake [SUVmax], metabolic tumour volume [MTV], and total lesion glycolysis [TLG]) were recorded before and after NACT. The impact of volumetric parameter changes induced by NACT (MTVRATIO, TLGRATIO, etc.) on overall survival (OS) was assessed using a Cox proportional hazards model.

Results

Eighty-four patients were assessed using CT volumetry; of those, 50 also had PET/CT before and after NACT. Low post-treatment CT volume and thickness, MTV, TLG, and SUVmax were all associated with longer OS (p < 0.05), as were CTthicknessRATIO, MTVRATIO, TLGRATIO, and SUVmaxRATIO (p < 0.05). In the multivariate analysis, only MTVRATIO (Hazard ratio, HR 2.52 [95 % Confidence interval, CI 1.33–4.78], p = 0.005), TLGRATIO (HR 3.89 [95%CI 1.46–10.34], p = 0.006), and surgical margin status (p < 0.05), were independent predictors of OS.

Conclusions

MTVRATIO and TLGRATIO are independent prognostic factors for survival in patients after NACT and resection for EC.

Key points

Change in PET parameters shows close correlation to survival in oesophageal cancer.

Association with OS is independent of changes in SUVmax and CT volume.

Metabolic parameters after NACT correlate with pathologic response and nodal status.

Metabolic parameters may be better suited than SUVmax for response assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AEG:

Adenocarcinoma of the gastro-oesophageal junction

CF:

Cisplatin and 5-fluorouracil

CI:

Confidence interval

DCF:

Docetaxel, cisplatin and 5-fluorouracil

EC:

Oesophageal cancer

EOX:

Epirubicin, oxaliplatin and Capecitabine

ESCC:

Squamous cell oesophageal cancer

FDG:

Fluoro-deoxyglucose

HR:

Hazard ratio

MTV:

Metabolic tumour volume

NACT:

Neoadjuvant chemotherapy

OS:

Overall survival

RCHT:

Radiochemotherapy

ROI:

Region of interest

SUVmax:

Maximal standardized uptake value

TLG:

Total lesion glycolysis

VOI:

Volume of interest

References

  1. Siewert JR, Stein HJ (1998) Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg 85:1457–1459

    Article  PubMed  CAS  Google Scholar 

  2. Castro C, Bosetti C, Malvezzi M et al (2014) Patterns and trends in esophageal cancer mortality and incidence in Europe (1980-2011) and predictions to 2015. Ann Oncol 25:283–290

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez L, Magno P, Ortiz AP et al (2013) Esophageal cancer incidence rates by histological type and overall: Puerto Rico versus the United States Surveillance, Epidemiology, and End Results population, 1992-2005. Cancer Epidemiol 37:5–10

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dubecz A, Gall I, Solymosi N et al (2012) Temporal trends in long-term survival and cure rates in esophageal cancer: a SEER database analysis. J Thorac Oncol 7:443–447

    Article  PubMed  Google Scholar 

  5. Mariette C, Dahan L, Mornex F et al (2014) Surgery Alone Versus Chemoradiotherapy Followed by Surgery for Stage I and II Esophageal Cancer: Final Analysis of Randomized Controlled Phase III Trial FFCD 9901. J Clin Oncol. doi:10.1200/JCO.2013.53.6532

    Google Scholar 

  6. Minsky BD, Neuberg D, Kelsen DP et al (1999) Final report of Intergroup Trial 0122 (ECOG PE-289, RTOG 90-12): Phase II trial of neoadjuvant chemotherapy plus concurrent chemotherapy and high-dose radiation for squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys 43:517–523

    Article  PubMed  CAS  Google Scholar 

  7. Cunningham D, Allum WH, Stenning SP et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355:11–20

    Article  PubMed  CAS  Google Scholar 

  8. Gebski V, Burmeister B, Smithers BM et al (2007) Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol 8:226–234

    Article  PubMed  CAS  Google Scholar 

  9. Yip C, Goh V, Davies A et al (2014) Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur Radiol 24:998–1005

    Article  PubMed  Google Scholar 

  10. van Hagen P, Hulshof MC, van Lanschot JJ et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366:2074–2084

    Article  PubMed  Google Scholar 

  11. Stahl M, Mariette C, Haustermans K, Cervantes A, Arnold D, Group EGW (2013) Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(uppl 6):vi51–vi56

    PubMed  Google Scholar 

  12. Lordick F, Ott K, Krause BJ et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8:797–805

    Article  PubMed  Google Scholar 

  13. Kelsen DP, Ginsberg R, Pajak TF et al (1998) Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 339:1979–1984

    Article  PubMed  CAS  Google Scholar 

  14. Vallbohmer D, Holscher AH, Dietlein M et al (2009) [18F]-Fluorodeoxyglucose-positron emission tomography for the assessment of histopathologic response and prognosis after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg 250:888–894

    Article  PubMed  Google Scholar 

  15. Kim MP, Correa AM, Lee J et al (2010) Pathologic T0N1 esophageal cancer after neoadjuvant therapy and surgery: an orphan status. Ann Thorac Surg 90:884–890, discussion 890-881

  16. Yuan ST, Brown RK, Zhao L et al (2014) Timing and intensity of changes in FDG uptake with symptomatic esophagitis during radiotherapy or chemo-radiotherapy. Radiat Oncol 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ba-Ssalamah A, Matzek W, Baroud S et al (2011) Accuracy of hydro-multidetector row CT in the local T staging of oesophageal cancer compared to postoperative histopathological results. Eur Radiol 21:2326–2335

    Article  PubMed  Google Scholar 

  18. Beer AJ, Wieder HA, Lordick F et al (2006) Adenocarcinomas of esophagogastric junction: multi-detector row CT to evaluate early response to neoadjuvant chemotherapy. Radiology 239:472–480

    Article  PubMed  Google Scholar 

  19. Li R, Chen TW, Hu J et al (2013) Tumor volume of resectable adenocarcinoma of the esophagogastric junction at multidetector CT: association with regional lymph node metastasis and N stage. Radiology 269:130–138

    Article  PubMed  Google Scholar 

  20. Chen HH, Chiu NT, Su WC, Guo HR, Lee BF (2012) Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 264:559–566

    Article  PubMed  Google Scholar 

  21. Kim TM, Paeng JC, Chun IK et al (2013) Total lesion glycolysis in positron emission tomography is a better predictor of outcome than the International Prognostic Index for patients with diffuse large B cell lymphoma. Cancer 119:1195–1202

    Article  PubMed  CAS  Google Scholar 

  22. Foley KG, Fielding P, Lewis WG et al (2014) Prognostic significance of novel (1)(8)F-FDG PET/CT defined tumour variables in patients with oesophageal cancer. Eur J Radiol 83:1069–1073

    Article  PubMed  Google Scholar 

  23. Blom RL, Steenbakkers IR, Lammering G et al (2013) PET/CT-based metabolic tumour volume for response prediction of neoadjuvant chemoradiotherapy in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40:1500–1506

    Article  PubMed  CAS  Google Scholar 

  24. Kim HI, Cheong JH, Song KJ et al (2013) Staging of adenocarcinoma of the esophagogastric junction: comparison of AJCC 6th and 7th gastric and 7th esophageal staging systems. Ann Surg Oncol 20:2713–2720

    Article  PubMed  Google Scholar 

  25. Palie O, Michel P, Menard JF et al (2013) The predictive value of treatment response using FDG PET performed on day 21 of chemoradiotherapy in patients with oesophageal squamous cell carcinoma. A prospective, multicentre study (RTEP3). Eur J Nucl Med Mol Imaging 40:1345–1355

    Article  PubMed  CAS  Google Scholar 

  26. Lee JW, Kang CM, Choi HJ et al (2014) Prognostic Value of Metabolic Tumor Volume and Total Lesion Glycolysis on Preoperative 18F-FDG PET/CT in Patients with Pancreatic Cancer. J Nucl Med 55:898–904

    Article  PubMed  Google Scholar 

  27. Van de Wiele C, Kruse V, Smeets P, Sathekge M, Maes A (2013) Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging 40:290–301

    Article  PubMed  CAS  Google Scholar 

  28. Kim MK, Ryu JS, Kim SB et al (2007) Value of complete metabolic response by (18)F-fluorodeoxyglucose-positron emission tomography in oesophageal cancer for prediction of pathologic response and survival after preoperative chemoradiotherapy. Eur J Cancer 43:1385–1391

    Article  PubMed  Google Scholar 

  29. zum Buschenfelde CM, Herrmann K, Schuster T et al (2011) (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 52:1189–1196

    Article  PubMed  Google Scholar 

  30. van Elmpt W, Ollers M, Dingemans AM, Lambin P, De Ruysscher D (2012) Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med 53:1514–1520

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hyun SH, Choi JY, Shim YM et al (2010) Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 17:115–122

    Article  PubMed  Google Scholar 

  32. Chen SW, Hsieh TC, Ding HJ et al (2014) Pretreatment metabolic tumor volumes to predict the short-term outcome of unresectable locally advanced squamous cell carcinoma of the esophagus treated with definitive chemoradiotherapy. Nucl Med Commun 35:291–297

    Article  PubMed  Google Scholar 

  33. Li YM, Lin Q, Zhao L et al (2014) Pre-treatment metabolic tumor volume and total lesion glycolysis are useful prognostic factors for esophageal squamous cell cancer patients. Asian Pac J Cancer Prev 15:1369–1373

    Article  PubMed  Google Scholar 

  34. Lemarignier C, Di Fiore F, Marre C et al (2014) Pretreatment metabolic tumour volume is predictive of disease-free survival and overall survival in patients with oesophageal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 41:2008–2016

    Article  PubMed  CAS  Google Scholar 

  35. Schollaert P, Crott R, Bertrand C, D'Hondt L, Borght TV, Krug B (2014) A systematic review of the predictive value of (18)FDG-PET in esophageal and esophagogastric junction cancer after neoadjuvant chemoradiation on the survival outcome stratification. J Gastrointest Surg 18:894–905

    Article  PubMed  Google Scholar 

  36. Ba-Ssalamah A, Zacherl J, Noebauer-Huhmann IM et al (2009) Dedicated multi-detector CT of the esophagus: spectrum of diseases. Abdom Imaging 34:3–18

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mary McAllister for proofreading and correcting the manuscript. The scientific guarantor of this publication is Ahmed Ba-Ssalamah. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding.

One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board. No study subjects or cohorts have been previously reported. Methodology: retrospective, observational, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Tamandl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Regression diagrams for the relation of CT tumour volume in comparison to metabolic tumour volumes at different SUV thresholds. a and b show pre-treatment values of MTV at 2.5 and MTV at 4.0 compared to CT volumetry. Likewise, c and d show post-treatment values of those respective parameters. R, Pearson regression coefficient (GIF 21 kb)

High resolution image (TIFF 3567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamandl, D., Gore, R.M., Fueger, B. et al. Change in volume parameters induced by neoadjuvant chemotherapy provide accurate prediction of overall survival after resection in patients with oesophageal cancer. Eur Radiol 26, 311–321 (2016). https://doi.org/10.1007/s00330-015-3860-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3860-7

Keywords

Navigation