Skip to main content

Advertisement

Log in

Antarctic pearlwort (Colobanthus quitensis) populations respond differently to pre-germination treatments

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Seed germination depends on various biotic and abiotic interactions associated with maternal habitat. The formation of soil seed banks is a key strategy and has ecological implications, especially with regard to species that develop in extreme habitats. When establishing germplasm banks of these species from seeds, seed dormancy becomes one of the main difficulties. In this research, we study Colobanthus quitensis, a species with wide latitudinal and altitudinal distribution, inhabiting extreme environments from southern Mexico to maritime Antarctica. Furthermore, this species has been described to have a secondary dormancy that is dependent on the environment. In order to perform research without needing to have regular access to this species’ habitats, it is therefore vital to possess plant material from different populations representing the species distribution. Thus, we evaluated the effects of various pre-germination treatments on germination percentage and time in four populations of the species. A differential and significant effect was evidenced, both among treatments and populations. Acid scarification increased germination percentage and decreased germination time. The best treatments were determined by population, and direct seeding after a brief period of cold stratification (4 °C) allowed us to achieve good germination percentages in at least three of the studied populations. This new evidence allows optimization in the introduction, development, characterization, and availability of plant material of the different C. quitensis populations in the Antarctic Vascular Plant Germplasm Bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bascuñán-Godoy L, García-Plazaola J, Bravo L, Corcuera L (2010) Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biol 33:885–896

    Article  Google Scholar 

  • Baskin J, Baskin C (2000) Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. Seed Sci Res 10:409–413

    Article  Google Scholar 

  • Billings W (1987) Constraints to plant growth, reproduction, and establishment in arctic environments. Arct Antarct Alp Res 19:357–365

    Article  Google Scholar 

  • Block W, Smith L, Kennedy A (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484

    Article  CAS  Google Scholar 

  • Cavieres LA, Peñaloza A (1998) Efecto nodriza del cojín Laretia acaulis (Umbelliferae) en la zona alto-andina. Rev Chil Hist Nat 71:337–347

    Google Scholar 

  • Convey P (1996) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134

    Article  Google Scholar 

  • Convey P (2012) Polar terrestrial environments. In: Bell E (ed) Life at extremes: Environments, organisms and strategies for survival. CABI, Oxfordshire, pp 81–102

    Chapter  Google Scholar 

  • Cuba-Díaz M, Acuña D, Cordero CM, Klagges M (2014) Optimización de parámetros para la propagación in vitro de Colobanthus quitensis (Kunth) Bartl. Gayana Bot 71:58–67

    Article  Google Scholar 

  • Cuba-Díaz M, Klagges M, Fuentes-Lillo E, Cordero C, Acuña D, Opazo G, Troncoso-Castro J (2017a) Phenotypic variability and genetic differentiation in continental and island populations of Colobanthus quitensis (Caryophyllaceae: Antarctic pearlwort). Polar Biol 40:2397–2409

    Article  Google Scholar 

  • Cuba-Díaz M, Castel K, Acuña D, Machuca A, Cid I (2017b) Sodium chloride effect on Colobanthus quitensis seedling survival and in vitro propagation. Antarct Sci 29:45–46

    Article  Google Scholar 

  • Cuba-Díaz M, Cerda G, Rivera C, Gómez A (2017c) Genome size comparison in Colobanthus quitensis populations show differences in species ploidy. Polar Biol 40:1475–1480

    Article  Google Scholar 

  • Edwards J (1974) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.: VI. Reproductive performance on Signy Island. Brit Antarct Surv B 39:67–86

    Google Scholar 

  • Fuentes-Lillo E, Cuba-Díaz M, Troncoso-Castro JM, Rondanelli-Reyes M (2017a) Seeds of non-native species in King George Island soil. Antarct Sci 29:324–330

    Article  Google Scholar 

  • Fuentes-Lillo E, Cuba-Díaz M, Rifo S (2017b) Morpho-physiological response of Colobanthus quitensis and Juncus bufonius under different simulations of climate change. Polar Sci 11:11–18

    Article  Google Scholar 

  • Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Díaz M, Cavieres L, Bravo L, Corcuera L (2004) Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and the maritime Antarctic. Arct Antarct Alp Res 36:484–489

    Article  Google Scholar 

  • Giełwanowska I, Bochenek A, Gojło E, Görecki R, Kellmann W, Pastorczyk M, Szczuka E (2011) Biology of generative reproduction of Colobanthus quitensis (Kunth) Bartl. from King George Island. South Shetland Islands. Pol Polar Res 32:139–155

    Article  Google Scholar 

  • Gutterman Y (2000) Maternal effects on seeds during development. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CABI, Oxfordshire, pp 59–84

    Chapter  Google Scholar 

  • Hughes K, López J, Francis J, Crame J, Carcavilla L, Shiraishi K, Yamaguchi A (2016) Antarctic geoconservation: a review of current systems and practices. Environ Conserv 43:97–108

    Article  Google Scholar 

  • Kellmann-Sopyła W, Giełwanowska I (2015) Germination capacity of five polar Caryophyllaceae and Poaceae species under different temperature conditions. Polar Biol 38:1753–1765

    Article  Google Scholar 

  • Kellmann-Sopyła W, Lahuta L, Giełwanowska I, Górecki R (2015) Soluble carbohydrates in developing and mature diaspores of polar Caryophyllaceae and Poaceae. Acta Physiol Plant 37:118

    Article  CAS  Google Scholar 

  • Koorneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  Google Scholar 

  • Lintyńska-Zając M, Chwedorzewska K, Korczak-Abshire M, Augustyniuk-Kram A, Olech M (2012) Diaspores and phytoremains accidentally transported to the Antarctic Station during three expeditions. Biodivers Conserv 21:3411–3421

    Article  Google Scholar 

  • Matheus M, Rodríguez-Junior A, Oliveira D, García Q (2017) Seed longevity and physical dormancy break of two endemic species of Dimorphandra from Brazilian biodiversity hospots. Seed Sci Res 27:199–205

    Article  CAS  Google Scholar 

  • McGraw J, Day T (1997) Size and characteristics of a natural seed bank in Antarctic. Arct Antarct Alp Res 29:213–216

    Article  Google Scholar 

  • Molina-Montenegro MA, Torres-Díaz C, Carrasco-Urra F, González-Silvestre LA, Gianoli E (2012) Plasticidad fenotípica en dos poblaciones antárticas de Colobanthus quitensis (Caryophyllaceae) bajo un escenario simulado de cambio global. Gayana Bot 69:152–160

    Article  Google Scholar 

  • Moore DM (1970) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. Brit Antarct Surv B 23:63–80

    Google Scholar 

  • Pereira M, Corrêa F, Polo M, de Castro E, Cardoso A, Pereira F (2016) Seed germination of Schinus molle L. (Anacardiaceae) as related to its anatomy and dormancy alleviation. Seed Sci Res 26:351–361

    Article  CAS  Google Scholar 

  • Pollmann W (2003) Stand structure and dendroecology of an old-growth Nothofagus forest in Conguillio National Park, south Chile. Forest Ecol Manag 176:87–103

    Article  Google Scholar 

  • Ruhland C, Day T (2001) Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of Colobanthus quitensis seedlings. Environ Exp Bot 45:143–154

    Article  CAS  PubMed  Google Scholar 

  • Sanhueza C, Vallejos V, Cavieres L, Saez P, Bravo L, Corcuera L (2017) Growing temperature affects seed germination of the antarctic plant Colobanthus quitensis (Kunth) Bartl (Caryophyllaceae). Polar Biol 40:449–455

    Article  Google Scholar 

  • Smith R (2003) The enigma of Colobanthus quitensis and Deschampsia antarctica. In: Huiskes AHL, Gieskes WWC, Rozema J, Schoro RML, Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publlishers, Leiden, pp 34–239

    Google Scholar 

  • Suma N, Srimathi P (2014) Influence of water flotation technique on seed and seedling quality characteristics of Sesamum indicum. J Agric Vet Sci 7:51–53

    Google Scholar 

  • Thompson K, Ceriani R, Bakker J, Bekker R (2003) Are seed dormancy and persistence in soil related? Seed Sci Res 13:97–100

    Article  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson KEN, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17(6):2145–2161

    Article  Google Scholar 

  • Wódkiewicz M, Galera H, Giełwanowska I, Chwedorzewska KJ, Olech M (2013) Diaspores of the introduced species Poa annua L. in soil samples from King George Island (South Shetlands, Antarctic). Arct Antarct Alp Res 45:415–419

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by VRID Project 217.418.009–1.0, Vice-Rectory for Research and Development, University of Concepción. The authors would like to thank Journal Revisions (https://www.journalrevisions.com) for their English revision and editing of the final manuscript. The authors would also like to thank Dieter Piepenburg and the other reviewers for their thorough analysis, which led to a significant improvement in this work. This article contributes to the SCAR biological research programs: “Antarctic Thresholds-Ecosystem Resilience and Adaptation” (AnT-ERA) and “State of the Antarctic Ecosystem” (AnT-Eco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marely Cuba-Díaz.

Ethics declarations

Conflicts of interest:

All authors declared that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuba-Díaz, M., Acuña, D. & Fuentes-Lillo, E. Antarctic pearlwort (Colobanthus quitensis) populations respond differently to pre-germination treatments. Polar Biol 42, 1209–1215 (2019). https://doi.org/10.1007/s00300-019-02505-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-019-02505-4

Keywords

Navigation