Skip to main content
Log in

Biology and ecology of the world’s largest invertebrate, the colossal squid (Mesonychoteuthis hamiltoni): a short review

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The colossal squid Mesonychoteuthis hamiltoni (Robson 1925) is the largest (heaviest) living invertebrate and although it is preyed upon by many top predators, its basic biology and ecology remain one of the ocean’s great mysteries. The present study aims to review the current biological knowledge on this squid. It is considered to be endemic in the Southern Ocean (SO) with a circumpolar distribution spreading from the Antarctic continent up to the Sub-Antarctic Front. Small juveniles (<40 mm mantle length) are mainly found from the surface to 500 m, and the late juvenile stages are assumed to undergo ontogenetic descent to depths reaching 2000 m. Thus, this giant spends most of its life in the meso- and bathypelagic realms, where it can reach a total length of 6 m. The maximum weight recorded so far was 495 kg. M. hamiltoni is presently reported from the diets of 17 different predator species, comprising penguins and other seabirds, fishes and marine mammals, and may feed on various prey types, including myctophids, Patagonian toothfish, sleeper sharks and other squid. Stable isotopic analysis places the colossal squid as one of the top predators in the SO. It is assumed that this squid is not capable of high-speed predator–prey interactions, but it is rather an ambush predator. Its eyes, the largest on the planet, seem to have evolved to detect very large predators (e.g., sperm whales) rather than to detect prey at long distances. The study of this unique invertebrate giant constitutes a valuable source of insight into the biophysical principles behind body-size evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

[modified from Xavier et al. (2015b)]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvito PM, Rosa R, Phillips RA, Cherel Y, Ceia F, Guerreiro M, Seco J, Baeta A, Vieira RP, Xavier JC (2015) Cephalopods in the diet of nonbreeding black-browed and grey-headed albatrosses from South Georgia. Polar Biol 38:631–641

    Article  Google Scholar 

  • Anderson CIH, Rodhouse PG (2002) Distribution of juvenile squid in the Scotia Sea in relation to regional oceanography. Bull Mar Sci 71:97–108

    Google Scholar 

  • Arata J, Robertson G, Valencia J, Xavier J, Eacute C, Moreno CA (2004) Diet of grey-headed albatrosses at the Diego Ramírez Islands, Chile: ecological implications. Antarctic Sci 16:263–275

    Article  Google Scholar 

  • Arnett AE, Gotelli NJ (2003) Bergmannʼs rule in larval ant lions: testing the starvation resistance hypothesis. Ecol Entomol 6:645–650

  • Arntz WE, Brey T, A. GV (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Barnes DKA, Hodgson DA, Convey P, Allen CS, Clarke A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  • Bolstad KS, O’Shea S (2004) Gut contents of a giant squid Architeuthis dux (Cephalopoda: Oegopsida) from New Zealand waters. New Zeal J Zool 31:15–21

    Article  Google Scholar 

  • Brandt A, Gooday AJ, Brandão SN, Brix S, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311

    Article  CAS  PubMed  Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature 399:114–115

    Article  CAS  Google Scholar 

  • Chapelle G, Peck LS (2004) Amphipod crustacean size spectra: new insights in the relationship between size and oxygen. Oikos 106:167–175

    Article  Google Scholar 

  • Cherel Y, Duhamel G (2004) Antarctic jaws: cephalopod prey of sharks in Kerguelen waters. Deep-Sea Res I 51:17–31

    Article  Google Scholar 

  • Cherel Y, Hobson KA (2005) Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc Royal Soc B 272:1601–1607

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Progr Ser 329:281–287

  • Cherel Y, Klages N (1998) A review of the food of albatrosses. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty & Sons, Chipping Norton, Australia, pp 113–136

    Google Scholar 

  • Cherel Y, Duhamel G, Gasco N (2004) Cephalopod fauna of subantarctic islands: new information from predators. Mar Ecol Progr Ser 266:143–156

  • Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Ani Ecol 76:826–836. doi:10.1111/j.1365-2656.2007.01238.x

    Article  Google Scholar 

  • Clarke MR (1980) Cephalopoda in the diet of sperm whales of the southern hemisphere and their bearing on sperm whale biology. Discov Rep 37:324

  • Clarke A (2003) Evolution, adaptation, and diversity: global ecology in an Antarctic context. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Int. Biol. Symp. Backhuys Publishers, Leiden, pp 3–17

    Google Scholar 

  • Clarke MR, Goodall N (1994) Cephalopods in the diets of three Odontoceti cetacean species stranded at Tierra del Fuego, Globicephala melaena (Traill, 1809), Hyperoodon planifrons Flower, 1882 and Cephalorhynchus commersonii (Lacepede, 1804). Antarctic Sci 6:149–154

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114

  • Clarke MR, MacLeod N (1982) Cephalopod remains from the stomachs of sperm whales caught in the Tasman sea. Mem Nat Mus Victoria 43:25–42

  • Clarke MR, Prince PA (1981) Cephalopod remains in regurgitations of black-browed and grey-headed albatrosses at South Georgia. Brit Antarctic Surv Bull 54:1–8

  • Clarke MR, MacLeod N, Paliza O (1976) Cephalopod remains from the stomachs of Sperm whales caught off Peru and Chile. J Zoology 180:477–493

    Article  Google Scholar 

  • Collins MA, Rodhouse PG (2006) Southern Ocean cephalopods. Adv Mar Biol 50:191–265

    Article  PubMed  Google Scholar 

  • Cooper J, Brown CR (1990) Ornithological research at the sub-Antarctic Prince Edward Islands: a review of achievements. S Afr Trans Nav Antarkt 20:40–57

  • Cooper J, Henley S, Klages N (1992) The diet of the wandering albatross Diomedea exulans at subantarctic Marion Island. Polar Biol 12:477–484

    Article  Google Scholar 

  • Croxall JP, Prince PA (1994) Dead or alive, night or day—how do albatrosses catch squid. Antarctic Sci 6:155–162

    Article  Google Scholar 

  • Filippova JA (1991) Morpho-ecological aspects of the study of Antarctic squids. Bull Mar Sci 49:662

    Google Scholar 

  • Filippova JA (2002) Review of Soviet/Russian studies on squids in the Antarctic Ocean. Bull Mar Sci 71:255–267

    Google Scholar 

  • Filippova JA, Pakhomov EA (1994) Young squid in the plankton of Prydz Bay, Antarctica. Antarctic Sci 6:171–173

    Article  Google Scholar 

  • Filippova JA, V. L. (1979) Specific composition and distribution of cephalopod molluscs in meso- and bathypelagic Antarctic waters. Antarktika Dokl Kom 175–187

  • Filippova JA (1972) New data on the squids (Cephalopoda: Oegopsida) from the Scotia Sea (Antarctic). Malacologia 11:391–406

    Google Scholar 

  • Fiscus CH, Rice DW, Wolman AA (1989) Cephalopods from the stomachs of sperm whales taken off California. NOAA Tech Rep NMFS 83:1–12

  • Fonseca Vd, Petry M (2007) Evidence of food items used by Fulmarus glacialoides (Smith 1840) (Procellariiformes: Procellariidae) in Southern Brazil. Polar Biol 30:317–320

    Article  Google Scholar 

  • Green K, Kerry KR, Disney T, Clarke MR (1998) Dietary studies of light-mantled sooty albatrosses Phoebetria palpebrata from Macquarie and Heard Islands. Mar Ornithol 26:19–26

  • Grist EPM, Jackson GH (2007) How long would take to become a giant squid? Rev Fish Biol Fish 17:385–399

    Article  Google Scholar 

  • Guerreiro M, Phillips RA, Cherel Y, Ceia FR, Alvito P, Rosa R, Xavier JC (2015) Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar Ecol Progr Ser 530:119–134

  • Herring PJ, Dilly PN, Cope C (2002) The photophores of the squid family Cranchiidae (Cephalopoda: Oegopsida). J Zool 258:73–90

    Article  Google Scholar 

  • Ibáñez CM, Keyl F (2010) Cannibalism in cephalopods. Rev Fish Biol Fish 20:123–136

  • Imber MJ (1992) Cephalopods eaten by wandering albatrosses Diomedea exulans L. breeding at six circumpolar localities. J Roy Soc New Zealand 22:243–263

    Article  Google Scholar 

  • Imber MJ, Berruti A (1981) Proccellariiform seabirds as squid predators. In: Cooper J (ed) Proceedings of the Symposium on Birds of the Sea and Shore. African Seabird Group, Cape Town, pp 43–61

  • Jackson GD, Finn J, Nicol S (2002) Planktonic cephalopods collected off East Antarctica during the ‘BROKE’ survey. Deep-Sea Res I 49:1049–1054

    Article  Google Scholar 

  • Jereb P, Roper CFE (2010) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Myopsidae and Oegopsidae. FAO Species Catal Fish Purp 2(4):605

    Google Scholar 

  • Jereb P, Roper CFE, Norman MD, Finn JK (2014) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and Vampire Squids. FAO, Rome

    Google Scholar 

  • Kent S, Seddon J, Roberston G, Wienecke BC (1998) Diet of Adélie penguins Pygoscelis adeliae at Shirley Island, East Antarctica, January 1992. Mar Ornithol 26:7–10

  • Klumov SK, Yukhov VL (1975) Mesonychoteuthis hamiltoni Robson, 1925 (Cephalopoda: Oegopsida). Antarktika Dokl Kom 14:159–189

  • Korabelnikov L (1959) The diet of sperm whales in the Antarctic seas. Priroda 3:103–104

  • Kubodera T, Mori K (2005) First-ever observations of a live giant squid in the wild. Proc Royal Soc B 272:2583–2586

  • Kubodera T, Koyama Y, Mori K (2006) Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. Proc Royal Soc B 274:1029–1034

  • Land MF, Nilsson D-E (2002) Animal Eyes. Oxford University Press, Oxford

    Google Scholar 

  • Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878

    Article  Google Scholar 

  • Lipinski MR (1986) Methods for the validation of squid age from statoliths. J Mar Biol Assoc UK 66:505–526

    Article  Google Scholar 

  • Lipinski MR, Jackson S (1989) Surface-feeding on cephalopods by procellariiform seabirds in the southern Benguela region, South Africa. J Zool 218:549–563

    Article  Google Scholar 

  • Lu CC, Williams R (1994) Contribution to the biology of squid in the Prydz Bay region, Antarctica. Antarctic Sci 6:223–229

    Google Scholar 

  • McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, Dove AD, Gaskins LC, Helm RR, Hochberg FG (2015) Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 3:e715

    Article  PubMed  PubMed Central  Google Scholar 

  • McSweeny ES (1970) Description of the juvenile form of the Antarctic squid Mesonychoteuthis hamiltoni Robson. Malacologia 323–332

  • Moore JK, Abbott MR, Richman JG (1997) Variability in the location of the Antarctic Polar Front (90 degrees-20 degrees W) from satellite sea surface temperature data. J Geophys Res Oceans 102:27825–27833

    Article  Google Scholar 

  • Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J Geophys Res-Oc 104:3059–3073

    Article  Google Scholar 

  • Nesis KN (1974) Giant Squids. Priroda 6:55–60

  • Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N (2012) A unique advantage for giant eyes in giant squid. Curr Biol 22:683–688. doi:10.1016/j.cub.2012.02.031

    Article  CAS  PubMed  Google Scholar 

  • Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641–673

    Article  Google Scholar 

  • Petrov AF, Tatarnikov VA (2011) Results of investigation of the diet of antarctic toothfish Dissostichus mawsoni (Nototheniidae) in the Lazarev Sea. J Ichthyol 51:131–135

    Article  Google Scholar 

  • Remeslo AV, Yakushev MR, Laptikhovsky V (2015) Alien vs. Predator: interactions between the colossal squid (Mesonychoteuthis hamiltoni) and the Antarctic toothfish (Dissostichus mawsoni). J Nat Hist 49:2483–2491

    Article  Google Scholar 

  • Ridoux V (1994) The diets and dietary segregation of seabirds at the Subantarctic Crozet Islands. Mar Ornithol 22:1–192

  • Roberts J, Xavier JC, Agnew DJ (2011) The diet of toothfish species Dissostichus eleginoides and Dissostichus mawsoni with overlapping distributions. J Fish Biol 79:138–154

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Williams R, Green K, Robertson L (1994) Diet composition of emperor penguin chicks Aptenodytes forsteri at two Mawson Coast colonies, Antarctica. Ibis 136:19–31

    Article  Google Scholar 

  • Robison BH, Seibel BA, Drazen JC (2014) Deep-Sea Octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. Plos One 9:e103437

  • Robson GC (1925) On Mesonychoteuthis, a new genus of oegopsid Cephalopoda. Ann Mag Nat Hist 272–277

  • Rodhouse PG (1998) Large and meso-scale distribution of the ommastrephid squid Martialia hyadesi in the Southern Ocean: a synthesis of information relevant to fishery forecasting and management. Korean J Polar Res 8:145–154

    Google Scholar 

  • Rodhouse PG, Clarke MR (1985) Growth and distribution of young Mesonychoteuthis hamiltoni Robson (Mollusca: Cephalopoda): an Antarctic squid. Vie et Milieu 35:223–230

    Google Scholar 

  • Rodhouse P, Hatfield E (1990) Age determination in squid using statolith growth increments. Fish Res 8:323–334

    Article  Google Scholar 

  • Rodhouse PG, White MG (1995) Cephalopods occupy the ecological niche of epipelagic fish in the Antactic Polar Frontal zone. Biol Bull 189:77–80

    Article  CAS  PubMed  Google Scholar 

  • Rodhouse PG, Clarke MR, Murray AWA (1987) Cephalopod prey of the wandering albatross Diomedea exulans. Marine Biol 96:1–10

    Article  Google Scholar 

  • Rodhouse PG, Arnbom T, Fedak MA, Yeatman J, Murray AWA (1992) Cephalopod prey of the southern elephant seal, Mirounga leonina L. Can J Zool 70:1007–1015

    Article  Google Scholar 

  • Rodhouse PG, Prince PA, Trathan PN, Hatfield EMC,, Watkins JL, Bone DG, Murphy EJ, White MG (1996) Cephalopods and mesoscale oceanography at the Antarctic Polar Front: Satellite tracked predators locate pelagic trophic interactions. Mar Ecol Progr Ser 136:37–50

  • Rosa R, Seibel BA (2010) Slow pace of life of the Antarctic colossal squid. J Mar Bioll Assoc UK 90:1375–1378. doi:10.1017/s0025315409991494

    Article  Google Scholar 

  • Rosa R, Trueblood L, Seibel BA (2009) Ecophysiological influence on scaling of aerobic and anaerobic metabolism of pelagic gonatid squids. Physiol Biochem Zool 82:419–429

    Article  CAS  PubMed  Google Scholar 

  • Schmitz L, Motani R, Oufiero C, Martin C, McGee M, Gamarra A, Lee J, Wainwright P (2013) Allometry indicates giant eyes of giant squid are not exceptional. BMC Evol Biol 13:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Seibel BA (2007) On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). J Exp Biol 210:1–11

    Article  CAS  PubMed  Google Scholar 

  • Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans Royal Soc B 362:2061–2078

  • Seibel BA, Thuesen EV, Childress JJ (2000) Light-limitation on predator-prey interactions: consequences for metabolism and locomotion of deep-sea cephalopods. Biol Bull 198:284–298

    Article  CAS  PubMed  Google Scholar 

  • Stowasser G, Atkinson A, McGill RAR, Phillips RA, Collins MA, Pond DW (2012) Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep Sea Res II(59–60):208–221

    Article  Google Scholar 

  • Strugnell JM, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibáñez CM, Jorgensen E, Laptikhovsky VV, Linse K, Norman Mea (2011) The Southern Ocean: Source and sink? Deep Sea Res II(58):196–204

    Article  Google Scholar 

  • Vermeij GJ (2016) Gigantism and Its Implications for the History of Life. Plos One 11:e0146092 doi:10.1371/journal.pone.0146092

  • Voss NA (1980) A generic revision of the Cranchiidae (Cephalopoda, Oegopsida). B Mar Sci 30:365–412

  • Voss N, Stephen SJ, Dong Z (1992) Family Cranchiidae. Smiths Cont Zool 513:187–210

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Bloomfield Hills, Cranbrook

  • Xavier JC, Cherel Y (2009) Cephalopod beak guide for the Southern Ocean. Brit Antarctic Surv. Cambridge, UK

    Google Scholar 

  • Xavier JC, Croxall JP (2007) Predator-prey interactions: why do larger albatrosses eat bigger squid? J Zool 271:408–417

    Article  Google Scholar 

  • Xavier JC, Rodhouse PG, Trathan PN, Wood AG (1999) A Geographical information system (GIS) atlas of cephalopod distribution in the southern ocean. Antarct Sci 11:61–62

    Article  Google Scholar 

  • Xavier JC, Rodhouse PG, Purves MG, Daw TM, Arata J, Pilling GM (2002a) Distribution of cephalopods recorded in the diet of the Patagonian toothfish (Dissostichus eleginoides) around South Georgia. Polar Biol 25:323–330

    Google Scholar 

  • Xavier JC, Rodhouse PG, Purves MG, Daw TM, Arata J, Pilling GM (2002b) Distribution of cephalopods recorded in the diet of the Patagonian toothfish (Dissostichus eleginoides) around South Georgia. Polar Biol 25:323–330. doi:10.1007/s00300-001-0343-x

    Google Scholar 

  • Xavier JC, Croxall JP, Reid K (2003a) Inter-annual variation in the diet of two albatross species breeding at South Georgia: implications for breeding performance. Ibis 145:593–610

    Article  Google Scholar 

  • Xavier JC, Croxall JP, Trathan PN, Rodhouse PG (2003b) Inter-annual variation in the cephalopod component of the diet of wandering albatrosses Diomedea exulans breeding at Bird Island, South Georgia. Mar Biol 142:611–622

    Article  Google Scholar 

  • Xavier JC, Wood AG, Rodhouse PG, Croxall JP (2007) Interannual variations in cephalopod consumption by albatrosses at South Georgia: implications for future commercial exploitation of cephalopods. Mar Fresh Res 58:1136–1143

  • Xavier JC, Phillips RA, Cherel Y (2011) Cephalopods in marine predator diet assessments: why identifying upper and lower beaks is important. ICES J Mar Sci 68:1857–1864

    Article  Google Scholar 

  • Xavier JC, Walker K, Elliott G, Cherel Y, Thompson D (2014) Cephalopod fauna of South Pacific waters: new information from breeding New Zealand wandering albatrosses. Mar Ecol Prog Ser 513:131–142

    Article  Google Scholar 

  • Xavier JC, Allcock L, Cherel Y, Hoving H-J, Lipinski M, Gomes-Pereira JN, Piatkowski U, Pierce G, Rodhouse PG, Rosa R, Liz Shea L, Strugnell J, Vidal E, Villanueva R, Ziegler A (2015a) The future challenges in cephalopod research for the next decade. J Mar Biol Assoc UK 95:999–1015

    Article  Google Scholar 

  • Xavier JC, Raymond B, Jones DC, Griffiths H (2015b) Biogeography of cephalopods in the Southern Ocean using habitat suitability prediction models. Ecosystems 19:220–247. doi:10.1007/s10021-015-9926-1

    Article  Google Scholar 

  • Young RE (1975) Transitory eye shapes and the vertical distribution of two midwater squids. Pac Sci 29:243–255

    Google Scholar 

  • Young RE (1977) Ventral bioluminescence countershading in midwater cephalopods. In: Nixon M, Messenger J (eds) Biology of cephalopods Symposia of the Zoological Society of London No. 38. Academic Press, London, pp 161–190

  • Young RE, Kampa EM, Maynard SD, Mencher FM, Roper CFE (1980) Counter illumination and the upper depth limits of midwater animals. Deep-Sea Res A 27:671–691

  • Yukhov VL (2012) Antarctic deep-water squid (АDS) Mesonychoteuthis hamiltoni, Robson, 1925. Distribution and borders of the geographic range. Main results of complex research in the Azov and Black Seas Basin and the World Ocean. Kerch: YugNIRO 50:241–248 (Russian)

Download references

Acknowledgements

This study benefited from the strategic program of MARE, financed by FCT (MARE—UID/MAR/04292/2013). JX is supported by the Investigator FCT program (IF/00616/2013) and by the Foundation for Science and Technology (Portugal) and is associated to SCAR AnT-ERA, SCAR EGBAMM, ICED, BAS-CEPH programs. RR is supported by the Investigator FCT program (IF/01373/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, R., Lopes, V.M., Guerreiro, M. et al. Biology and ecology of the world’s largest invertebrate, the colossal squid (Mesonychoteuthis hamiltoni): a short review. Polar Biol 40, 1871–1883 (2017). https://doi.org/10.1007/s00300-017-2104-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2104-5

Keywords

Navigation