Skip to main content

Advertisement

Log in

Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Coralline red algae are a globally distributed and abundant group of shallow marine benthic calcifiers. They can form important ecosystems that provide a three-dimensional habitat to a large variety of marine organisms. While the study of coralline red algae has traditionally been focused on warm-water habitats, numerous recent reports have now described widespread coralline red algal ecosystems from high-latitude regions, particularly in the Northern Hemisphere. In fact, it is becoming increasingly evident that coralline red algae are likely the dominant marine calcifying organisms on the seafloor of the Arctic and subarctic photic zone. This article gives a first overview of the distribution of coralline red algal crusts and rhodolith (free-living coralline red algal nodules) grounds in Greenland and the first report of rhodoliths in East Greenland. Museum data and recent sampling information have been compiled to develop a distribution map of coralline genera and rhodolith communities. The depth range of coralline red algae in Greenland has been extended by 27 m, from 50 to 77 m depth. In addition, rhodoliths of the normally crust-forming species Clathromorphum compactum are described for the first time from a sheltered Greenland fjord. Based on the data compiled here, it becomes clear that rhodolith communities are a widespread feature of the Greenland shallow shelf areas. Gaining a better understanding of the distribution of these hitherto poorly understood high-latitude ecosystems is essential due to their function as spawning areas and nursery grounds for commercially important fish and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adey WH (1970a) Some relationships between crustose corallines and their substrate. Sci Islandica 2:21–25

    Google Scholar 

  • Adey WH (1970b) The effects of light and temperature on growth rates in Boreal-subarctic crustose corallines. J Phycol 6:269–276. doi:10.1111/j.1529-8817.1970.tb02392.x

    Google Scholar 

  • Adey WH, Halfar J, Williams B (2013) The Coralline Genus Clathromorphum Foslie emend. Adey: biological, physiological, and ecological factors controlling carbonate production in an arctic-subarctic climate archive. Smithson Contrib Mar Sci 40:1–41

    Article  Google Scholar 

  • Adey W, Halfar J, Humphreys A et al (2015) Subarctic rhodolith beds promote longevity of crustose coralline algal buildups and their climate archiving potential. Palaios 30:281–293. doi:10.2110/palo.2014.075

    Article  Google Scholar 

  • Bosence DWJ (1983) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224

    Chapter  Google Scholar 

  • Bosence D, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the NE Atlantic. Aquat Conserv Mar Freshw Ecosyst 13:21–31. doi:10.1002/aqc.565

    Article  Google Scholar 

  • Buchardt B, Seaman P, Stockmann G et al (1997) Submarine columns of ikaite tufa. Nature 390:129–130

    Article  CAS  Google Scholar 

  • Büdenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87

    Article  Google Scholar 

  • Chenelot H, Jewett SC, Hoberg MK (2011) Macrobenthos of the nearshore Aleutian Archipelago, with emphasis on invertebrates associated with Clathromorphum nereostratum (Rhodophyta, Corallinaceae). Mar Biodivers 41:413–424. doi:10.1007/s12526-010-0071-y

    Article  Google Scholar 

  • Christensen T (1971) Havbundens planter. In: Nørrevang A, Meyer TJ, Christensen S (eds) Grønlands natur. Politikens forlag, Copenhagen, pp 253–261

    Google Scholar 

  • Donnan DW, Moore PG (2003) Introduction. Aquat Conserv Mar Freshw Ecosyst 13:1–3. doi:10.1002/aqc.563

    Article  Google Scholar 

  • Düwel L (1996) Undersøgelse af kalkrødalgevegetationen i Ikkafjorden, Sydvestgrønland: Forløbige resultater af ekspeditionerne i 1995 og 1996. Botanical Institute, University of Copenhagen, Copenhagen, pp 1–54

    Google Scholar 

  • Düwel L, Wegeberg S (1992) Kalkinkrusterede rødalger på Disko: artsbestemmelse, systematik og biologi. In: Andersen PF, Düwel L, Hansen OS (eds) Feltkursus i Arktisk biologi, Godhavn 1990. Arctic Station University of Copenhagen, Copenhagen, pp 61–93

    Google Scholar 

  • Düwel L, Wegeberg S (1996a) Kalkrødalgerne ved Grønlands vestkyst. Urt 20:67–73

    Google Scholar 

  • Düwel L, Wegeberg S (1996b) The typification and status of Leptophytum (Corallinaceae, Rhodophyta). Phycologia 35:470–483. doi:10.2216/i0031-8884-35-5-470.1

    Article  Google Scholar 

  • Estes J, Duggins D (1995) Sea Otters and Kelp Forests in Alaska: generality and Variation in a Community Ecological Paradigm. Ecol Monogr 65:75–100

    Article  Google Scholar 

  • FAO (2009) The FAO international guidelines for the management of deep-sea fisheries in the high seas. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • ForBio (2013) The Invertebrate Collections. In: ForBio Mar. Course Greenl. http://invertebrate.b.uib.no/2013/09/. Accessed 10 Apr 2015

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667. doi:10.1046/j.1529-8817.2001.00195.x

    Article  Google Scholar 

  • Freiwald A (1993) Coralline algal maerl frameworks—islands within the phaeophytic kelp belt. Facies 29:133–148

    Article  Google Scholar 

  • Freiwald A (1998) Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway. J Sediment Res 68:763–776. doi:10.2110/jsr.68.763

    Article  Google Scholar 

  • Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984. doi:10.1111/j.1365-3091.1994.tb01435.x

    Article  Google Scholar 

  • Gagnon P, Matheson K, Stapleton M (2012) Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot Mar 55:85–99. doi:10.1515/bot-2011-0064

    Article  Google Scholar 

  • Garcia E, Ragnarsson G, Akí S et al (2006) Bottom Trawling and Scallop Dredging in the Arctic: Impacts of Fishing on Non-target Species, Vulnerable Habitats and Cultural Heritage. TemaNord. Nordic Council of Ministers, Copenhagen, pp 275–276

    Google Scholar 

  • Halfar J, Adey WH, Kronz A et al (2013) Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proc Natl Acad Sci USA 110:19737–19741. doi:10.1073/pnas.1313775110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Spencer JM, Moore PG (2000) Scallop dredging has profound, long-term impacts on maerl habitats. ICES J Mar Sci 57:1407–1415. doi:10.1006/jmsc.2000.0918

    Article  Google Scholar 

  • Hall-Spencer JM, Kelly J, Maggs CA (2010) Background Document for Maërl beds. OSPAR Comm 491(2010):1–36

    Google Scholar 

  • Higgins RP, Kristensen RM (1988) Kinorhyncha from Disko Island, West Greenland. Smithson Contrib Zool 458:1–55

  • Himmelmann JH (1991) Diving observations of subtidal communities in the northern Gulf of St. Lawrence. In: Therriault J-C (ed) The Gulf of St. Lawrence: Small ocean or big estuary? vol 113. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 319–332

  • Jørgensbye HIØ (2009) GFLK Årsrapport 2008. KANUAANA/GFLK Greenland Home Rule Government, Nuuk, pp 1–37

    Google Scholar 

  • Jørgensbye HIØ (2010) GFLK Årsrapport 2009. KANUAANA/GFLK Greenland Home Rule Government, Nuuk, pp 1–48

    Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencerc JM (2004) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429. doi:10.1016/j.icesjms.2004.02.004

    Article  Google Scholar 

  • Kamenos NA, Hoey TB, Nienow P et al (2012) Reconstructing Greenland ice sheet runoff using coralline algae. Geology 40:1095–1098. doi:10.1130/G33405.1

    Article  CAS  Google Scholar 

  • Kjellman RR (1883) The algae of the Arctic Sea, a survey of the species, together with an exposition of the general characters and the development of the flora. Kungl. Svenska vetenskapsakademiens handlingar, Stockholm

    Book  Google Scholar 

  • Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64. doi:10.1007/s00300-005-0055-8

    Article  Google Scholar 

  • Le Gall L, Saunders GW (2007) A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol 43:1118–1130. doi:10.1016/j.ympev.2006.11.012

    Article  PubMed  Google Scholar 

  • Marrack EC (1999) The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios 14:159–171. doi:10.2307/3515371

    Article  Google Scholar 

  • Mathieson AC, Penniman CA, Harris LG (1991) Northwest Atlantic rocky shore ecology. In: Mathieson AC, Nienhuis PH (eds) Intertidal and littoral ecosystems (Ecosystems of the World). Elsevier, Amsterdam, pp 109–192

    Google Scholar 

  • Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787. doi:10.1071/MF08335

    Article  CAS  Google Scholar 

  • Ojeda FP, Dearborn JH (1989) Community structure of macroinvertebrates inhabiting the rocky subtidal zone in the Gulf of Maine: seasonal and bathymetric distribution. Mar Ecol Prog Ser 57:147–161

    Article  Google Scholar 

  • Pedersen PM (2011) Grønlands havalger. Forlaget Epsilon, Copenhagen

    Google Scholar 

  • Penney D (1992) A preliminary account of the ostracod faunas of Disko Island. In: Andersen PF, Düwel L, Hansen OS (eds) Feltkursus i Arktisk biologi, Godhavn 1990. University of Copenhagen, Copenhagen, pp 181–197

    Google Scholar 

  • Pugh PJA, Davenport J (1997) Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. J Exp Mar Bio Ecol 210:1–21. doi:10.1016/S0022-0981(96)02711-6

    Article  Google Scholar 

  • Råd Ø (2014) Grønlands økonomi 2014. Nuuk, Greenland

    Google Scholar 

  • Rasmussen K (1932) South East Greenland. The Sixth Thule Expedition, 1931, from Cape Farewell to Angmagssalik. Geogr Tidsskr 35:169–197

    Google Scholar 

  • Rink H (1852-57) Grønland geographisk og statistisk beskrevet I, II. Copenhagen

  • Riosmena-Rodriguez R, Medina-López M (2010) The role of rhodolith beds in the recruitment of invertebrate species from the Southwestern Gulf of California, México. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their Role in Globally Changing Environments. Springer, Dordrecht, pp 127–138

    Chapter  Google Scholar 

  • Riosmena-Rodríguez R, López-Calderón JM, Mariano-Meléndez E et al (2012) Size and distribution of rhodolith beds in the Loreto Marine Park: their role in coastal processes. J Coast Res 279:255–260. doi:10.2112/JCOASTRES-D-11T-00008.1

    Article  Google Scholar 

  • Rosenvinge LK (1893) Grønlands havalger. Meddelser om Grønl III:981

  • Rosenvinge LK (1898) Om algevegetationen ved Grønlands kyster. Meddelser om Grønl 10:130–243

    Google Scholar 

  • Seaman PBB (2006) The columns of ikaite tufa in Ikka Fjord, Greenland. Monogr Greenl 340:1–39

    Google Scholar 

  • Sørensen MV, Kristensen RM (2000) Marine Rotifera from Ikka Fjord, SW Greenland. Bioscience 51:1–46

    Google Scholar 

  • Sswat M, Gulliksen B, Menn I et al (2015) Distribution and composition of the epibenthic megafauna north of Svalbard (Arctic). Polar Biol 38:861–877. doi:10.1007/s00300-015-1645-8

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv Mar Freshw Ecosyst 13:5–20. doi:10.1002/aqc.564

    Article  Google Scholar 

  • Steller DL, Riosemena-Rodriguez R, Foster MS (2009) Living rhodolith bed ecosystems in the Gulf of California. In: Johnson ME, Ledesma-Vazquez J (eds) Atlas of coastal ecosystems in the Western Gulf of California: tracking limestone deposits on the Margin of a young sea. University of Arizona Press, Tucson, pp 72–82

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ et al (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459. doi:10.1017/S0376892902000322

    Article  Google Scholar 

  • Teichert S (2014) Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci Rep 4:6972. doi:10.1038/srep06972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert S, Freiwald A (2014) Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences 11:833–842. doi:10.5194/bg-11-833-2014

    Article  Google Scholar 

  • Teichert S, Woelkerling W, Rüggeberg A et al (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80 31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51:371–390. doi:10.2216/11-76.1

    Article  Google Scholar 

  • Teichert S, Woelkerling W, Rüggeberg A et al (2014) Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60:15–37. doi:10.1007/s10347-013-0372-2

    Article  Google Scholar 

  • Therkildsen NO, Hemmer-Hansen J, Hedeholm RB et al (2013) Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol Appl 6:690–705. doi:10.1111/eva.12055

    Article  PubMed  PubMed Central  Google Scholar 

  • Thormar J (2008) The rhodoliths of Disko Fjord, Greenland: First visual record of the Lithothamnion glaciale/tophiforme (Corallinales, Rhodophyta) aggregation in Disko Fjord, 69°N, Greenland. In: Halberg KA (ed) Arctic Biology Field Course, Qeqertarsuaq, 2006. University of Copenhagen, Copenhagen, pp 87–112

    Google Scholar 

  • Thorsen MS, Klitgaard A, Jensen IB, Jørgensen M (1989) Undersøgelse af tre arktiske lokaliteter domineret af kalkincrusterende rødalger, på Disko, Grønland. In: Jørgensen M (ed) Feltkursus i Arktisk Biologi, Godhavn 1988. University of Copenhagen, Copenhagen, pp 207–274

    Google Scholar 

  • Tobler M, Honorio E, Janovec J, Reynel C (2007) Implications of collection patterns of botanical specimens on their usefulness for conservation planning: an example of two neotropical plant families (Moraceae and Myristicaceae) in Peru. Biodivers Conserv 16:659–677. doi:10.1007/s10531-005-3373-9

    Article  Google Scholar 

  • Wegeberg S (2014) Benthic flora. In: Boertmann D, Mosbech A, Schiedek D, Dünweber M (eds) Disko West: a strategic environmental impact assessment of hydrocarbon activities. Scientific Report from Danish Centre for Environment and Energy No. 71, pp 1–306

  • Wilson S, Charmaine B, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:279–289. doi:10.1016/j.biocon.2004.03.001

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Ellen Kenchington from Bedford Institute of Oceanography and Captain and crew aboard Canadian Coast Guard Ship Hudson for help with fieldwork. We are grateful to Dr. Calvin Campbell and Dr. Vlad Kostylev (NRCan) for the use of the 4KCam and Angus Robertson 416 (NRCan) for his able deployment of it under difficult conditions. Thanks to Martin Blicher from the Greenland Climate Research Centre for help with sampling in Greenland. Thanks TELE greenland for allowing us to use scuba diving footage. We further wish to thank the editor and three anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Funding

Helle Jørgensbye acknowledges support from an Industrial PhD grant from the Home Rule government of Greenland and Sustainable Fisheries Greenland. Jochen Halfar acknowledges support from a Natural Sciences and Engineering Research Council Canada, Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle I. Ø. Jørgensbye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jørgensbye, H.I.Ø., Halfar, J. Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland. Polar Biol 40, 517–531 (2017). https://doi.org/10.1007/s00300-016-1975-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1975-1

Keywords

Navigation