Skip to main content

Rhodoliths and Rhodolith Beds in the Rock Record

  • Chapter
  • First Online:
Rhodolith/Maërl Beds: A Global Perspective

Part of the book series: Coastal Research Library ((COASTALRL,volume 15))

Abstract

Calcareous coralline algae (Rhodophyta; Corallinales, Hapalidiales, and Sporolithales; corallines hereafter) constitute one of the most widespread and successful groups of marine macrophytes. They occur as crusts partially coating hard or soft substrates, as laminar thalli growing directly on the seabed, or forming structures rolling freely on the substrate with an inner nucleus or without it. These latter structures are called rhodoliths. They can be one of the most abundant components in carbonate platform deposits, forming the so-called rhodalgal facies. In assessments of the rhodoliths, internal and external algal growth morphology, rhodolith external form, rhodolith inner arrangement, and assemblages of organisms forming the rhodoliths can provide valuable information for reconstructing palaeoenvironmental and palaeoclimatic conditions. Rhodoliths can occur massively concentrated in beds several meters thick. These concentrations are referred as rhodolith beds. These rhodolith beds may be the result of biotic (autochthonous rhodolith beds), abiotic (allochthonous rhodolith beds) concentrations or due to a mixture of processes (paraautochthonous rhodolith beds). Taphonomic and facies analyses, as well as faunal assemblages, can provide the information needed to confidently differentiate among them. The rock record offers unique information to envisage the founding conditions and the long-term maintenance of the rhodolith beds. In this chapter, we review and update the information on fossil rhodoliths and rhodolith beds, and discuss their value for palaeoenvironmental and palaeoclimatic reconstructions. Also, we discuss the sedimentary and the sequence stratigraphy contexts in which rhodolith beds are preferentially formed and developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adey WH (1978) Algal ridges of the Caribbean Sea and West Indies. Phycologia 17:361–367

    Article  Google Scholar 

  • Adey WH (1979) Crustose coralline algae as microenvironmental indicators in the tertiary. In: Gray J, Boucot AJ (eds) Historical biogeography, plate tectonics and the changing environment. Oregon State University Press, Corvallis, pp 459–464

    Google Scholar 

  • Adey WH (1986) Coralline algae as indicators of sea-level. In: van de Plassche (ed) Sea-level research: a manual for the collection and evaluation of data. Free University, Amsterdam, pp 229–280

    Chapter  Google Scholar 

  • Adey WH, Macintyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84:883–904

    Article  Google Scholar 

  • Adey WH, Vassar JM (1975) Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia 14:5–69

    Article  Google Scholar 

  • Adey WH, Townsend R, Boykins W (1982) The crustose coralline algae of the Hawaiian Islands. Smithson Contrib Mar Sci 15:1–74

    Article  Google Scholar 

  • Aguirre J (1992) Evolución de las asociaciones fósiles del Plioceno marino de Cabo Roche (Cádiz). Rev. Española Paleontol. (Extra) 3–10

    Google Scholar 

  • Aguirre J, Braga JC (2005) The citation of nongeniculate fossil coralline red algal species in the twentieth century literature: an analysis with implications. Rev Esp Micropaleontol 37:57–62

    Google Scholar 

  • Aguirre J, Braga JC (2012) Upper Pliocene multistory rhodoliths from Cádiz (Atlantic S Spain). In: Aguirre J, Rösler A, Braga JC (eds) IV international rhodolith workshop, abstract volume and field trip guide. Granada. Sept 2012, p 5

    Google Scholar 

  • Aguirre J, Braga JC, Martín JM (1993) Algal nodules in the upper Pliocene deposits at the coast of Cadiz (S Spain). In: Barattolo F, De Castro P, Parente M (eds) Studies on fossil benthic algae. Bull Soc Paleontol Ital Spec 1:1–7

    Google Scholar 

  • Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651–667

    Article  Google Scholar 

  • Aguirre J, Perfectti F, Braga JC (2010) Integrating phylogeny, molecular clocks and the fossil record in the evolution of coralline algae (Corallinales, Rhodophyta). Paleobiology 36:519–533

    Article  Google Scholar 

  • Aguirre J, Braga JC, Martín JM, Betzler C (2012) Palaeoenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas 34:115–136

    Article  Google Scholar 

  • Aguirre J, Beláustegui Z, Domènech R, de Gibert JM, Martinell J (2014) Snapshot of a lower Pliocene Dendropoma reef from Sant Onofre (Baix Ebre Basin, Tarragona, NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 395:9–20

    Article  Google Scholar 

  • Alexandersson T (1974) Carbonate cementation in coralline algal nodules in the Skagerrak, north Sea; biochemical precipitation in undersaturated waters. J Sediment Petrol 44:7–26

    Google Scholar 

  • Alexandersson T (1977) Carbonates cementation in recent coralline algal constructions. In: Flügel E (ed) Fossil algae. Recent results and developments. Springer, Berlin, pp 261–269

    Chapter  Google Scholar 

  • Alexandersson T (1978) Destructive diagenesis of carbonate sediments in the eastern Skagerrak, north Sea. Geology 6:324–327

    Article  Google Scholar 

  • Amado-Filho GM, Maneveldt GW, Pereira-Filho GH, Manso RCC, Bahia RG, Barros-Barreto MB, Guimaraes SMPB (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Cien Mar 36:371–391

    Article  Google Scholar 

  • Amado-Filho GM, Pereira-Filho GH, Bahia RG, Abrantes DP, Veras PC, Matheus Z (2012a) Occurrence and distribution of rhodolith beds on the Fernando de Noronha archipelago of Brazil. Aquat Bot 101:41–45

    Article  Google Scholar 

  • Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012b) Rhodolith beds are major CaCO3 bio-factories in the tropical south west Atlantic. PLoS One 7:e35171. doi:10.1371/journal.pone.0035171

    Article  Google Scholar 

  • Arias C, Masse JP, Vilas L (1995) Hauterivian shallow marine calcareous biogenic mounds: SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 119:3–17

    Article  Google Scholar 

  • Baarli BG, Santos A, da Silva CM, Ledesma-Vázquez J, Mayoral E, Cachao M, Johnson ME (2012) Diverse macroids and rhodoliths from the upper Pleistocene of Baja California Sur, Mexico. J Coast Res 28:296–305

    Article  Google Scholar 

  • Ballantine DL, Bowden-Kerby A, Aponte NE (2000) Cruoriella rhodoliths from shallow-water back reef environments in La Parguera, Puerto Rico (Caribbean Sea). Coral Reefs 19:75–81

    Article  Google Scholar 

  • Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol 44:123–195

    Google Scholar 

  • Barnes J, Bellamy DJ, Jones DJ, Whitton BA (1970) Sublittoral reef phenomena of Aldabra. Nature 225:268–269

    Article  Google Scholar 

  • Bassi D (1995) Crustose coralline algal pavements from late Eocene – Colli Berici of northern Italy. Riv Ital Paleontol Stratigr 101:81–92

    Google Scholar 

  • Bassi D (1998) Coralline algal facies and their palaeoenvironments in the late Eocene of northern Italy (Calcare di Nago). Facies 39:179–202

    Article  Google Scholar 

  • Bassi D (2005) Larger foraminiferal and coralline algal facies in an upper Eocene storm influenced, shallow water carbonate platform (Colli Berici, north-eastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 226:17–35

    Article  Google Scholar 

  • Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Palaeoecol 295:258–280

    Article  Google Scholar 

  • Bassi D, Carannante G, Murru M, Simone L, Toscano F (2006) Rhodalgal/bryomol assemblages in temperate type carbonate, channelised depositional systems: the Early Miocene of the Sarcidano area (Sardinia, Italy). In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental control. Geol Soc Lond Spec Publ 255:35–52

    Google Scholar 

  • Bassi D, Humblet M, Iryu Y (2011) Recent ichnocoenoesis in deep water macroids, Ryukyu islands, Japan. Palaios 26:232–238

    Article  Google Scholar 

  • Bassi D, Iryu Y, Humblet M, Matsuda H, Machiyama H, Sasaki K, Matsuda S, Arai K, Inoue T (2012) Recent macroids on the Kikai-jima shelf, central Ryukyu islands, Japan. Sedimentology 59:2024–2041

    Article  Google Scholar 

  • Bassi D, Iryu Y, Braga JC, Takayanagi H, Tsuji T (2013) Bathymetric distribution of ichnocoenoses from recent subtropical algal nodules off Fraser Island, eastern Australia. Palaeogeogr Palaeoclimatol Palaeoecol 369:58–66

    Article  Google Scholar 

  • Bassi D, Simone L, Nebelsick, JH (this volume) Re-sedimented rhodoliths in channelized depositional systems: synopsis of examples from middle Eocene and early-middle Miocene. In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/maerl beds: a global perspective. Springer-Verlag, Berlin

    Google Scholar 

  • Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the palaeoecology of a temperate sea. Palaeogeogr Palaeoclimatol Palaeoecol 137:173–187

    Article  Google Scholar 

  • Basso D, Nalin R, Nelson CS (2009) Shallow-water Sporolithon rhodoliths from north island (New Zealand). Palaios 24:92–103

    Article  Google Scholar 

  • Basso D, Quaranta F, Vannucci G, Piazza M (2012) Quantification of the coralline carbonate from a Serravallian rhodolith bed of the tertiary Piedmont Basin (Stazzano, Alessandria, NW Italy). Geodiversitas 34:137–149

    Article  Google Scholar 

  • Beckmann JP, Beckmann R (1966) Calcareous algae from the Cretaceous and Tertiary of Cuba. Schweiz Paläont Abh 85:1–45

    Google Scholar 

  • Begon M, Harper JL, Tonwsend CR (1990) Ecology: individuals, populations and communities. Blackwell, Oxford, p 1068

    Google Scholar 

  • Benisek M-F, Betzler C, Marcano G, Mutti M (2009) Coralline-algal assemblages of a Burdigalian platform slope: implications for carbonate platform reconstruction (northern Sardinia, western Mediterranean Sea). Facies 55:375–386

    Article  Google Scholar 

  • Benisek M-F, Marcano G, Betzler C, Mutti M (2010) Facies and stratigraphic architecture of a Miocene warm-temperate to tropical fault-block carbonate platform, Sardinia (central Mediterranean Sea). In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligocene-Miocene climatic transition, vol 42. Spec Publ Int Assoc Sediment, Blackwell Publishing, pp 107–128

    Google Scholar 

  • Betzler C, Braga JC, Jaramillo-Vogel D, Römers M, Hübscher C, Schmiedl G, Lindhorst S (2011) Late Pleistocene and Holocene cool-water carbonates of the western Mediterranean Sea. Sedimentology 58:643–669

    Article  Google Scholar 

  • Binda PL (1973) Form and internal structure of recent algal nodules (rhodolites) from Bermuda: a discussion. J Geol 81:283

    Article  Google Scholar 

  • Blanc JJ (1968) Sedimentary geology of the Mediterranean Sea. Oceanogr Mar Biol Ann Rev 6:377–454

    Google Scholar 

  • Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:365–395

    Google Scholar 

  • Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224

    Chapter  Google Scholar 

  • Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths – a review. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Bosence DWJ (1983c) Coralline algae from the Miocene of Malta. Palaeontology 26:147–173

    Google Scholar 

  • Bosence DWJ (1984) Construction and preservation of two recent coralline algal reefs, St. Croix, Caribbean. Palaeontology 27:549–574

    Google Scholar 

  • Bosence DWJ (1985a) The “Coralligéne” of the Mediterranean – a recent analogue for tertiary coralline algal limestones. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin, pp 216–225

    Chapter  Google Scholar 

  • Bosence DWJ (1985b) Preservation of coralline algal reef frameworks. 5th Int Symp Coral Reefs Tahiti 6:623–628

    Google Scholar 

  • Bosence DWJ (1991) Coralline algae: mineralization, taxonomy, and palaeoecology. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 98–113

    Chapter  Google Scholar 

  • Bosence DWJ, Pedley HM (1982) Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese Islands. Palaeogeogr Palaeoclimatol Palaeoecol 38:9–43

    Article  Google Scholar 

  • Bosence DWJ, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquat Conserv 13:S21–S31

    Article  Google Scholar 

  • Brachert TC, Betzler C, Braga JC, Martín JM (1996) Record of climatic change in neritic carbonates: turnover in biogenic associations and depositional modes (upper Miocene, southern Spain). Int J Earth Sci (Geol Rundsch) 85:327–337

    Google Scholar 

  • Braga JC (2003) Application of botanical taxonomy to fossil coralline algae (Corallinales, Rhodophyta). Acta Micropaleontol Sin 20:47–56

    Google Scholar 

  • Braga JC, Aguirre J (1995) Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Rev Paleobot Palynol 86:265–285

    Article  Google Scholar 

  • Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41

    Article  Google Scholar 

  • Braga JC, Aguirre J (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern great barrier reef margin. Coral Reefs 23:547–558

    Google Scholar 

  • Braga JC, Aguirre J (2009) Algas calcáreas del Parque Natural de Cabo de Gata-Níjar. Guía de campo. In: Villalobos M, Pérez-Muñoz AB (eds) ACUMED y Consejería de Medio Ambiente (Junta de Andalucía). Aguas de la Cuenca Mediterránea, Madrid, p 206

    Google Scholar 

  • Braga JC, Bassi D (2007) Neogene history of Sporolithon Heydrich (Corallinales, Rhodophyta) in the Mediterranean region. Palaeogeogr Palaeoclimatol Palaeoecol 243:189–203

    Article  Google Scholar 

  • Braga JC, Martín JM (1988) Neogene coralline-algal growth-forms and their palaeoenvironments in the Almanzora River Valley (Almeria, S.E. Spain). Palaeogeogr Palaeoclimatol Palaeoecol 67:285–303

    Article  Google Scholar 

  • Braga JC, Bosence DW, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535–547

    Google Scholar 

  • Braga JC, Martín JM, Betzler C, Aguirre J (2006) Models of temperate carbonate deposition in neogene basins in SE Spain: a synthesis. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geol Soc Lond Spec Publ 255:121–135

    Google Scholar 

  • Braga JC, Vescogni A, Bosellini FR, Aguirre J (2009) Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeogr Palaeoclimatol Palaeoecol 275:113–128

    Article  Google Scholar 

  • Brandano M (this volume) Oligocene rhodolith beds in the central Mediterranean area. In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/maerl beds: a global perspective. Springer, Berlin

    Google Scholar 

  • Brandano M, Vannucci G, Pomar L, Obrador A (2005) Rhodolith assemblages from the lower Tortonian carbonate ramp of Menorca (Spain): environmental and paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 226:307–323

    Article  Google Scholar 

  • Brandano M, Corda L, Castorina F (2010) Facies and sequence architecture of a tropical foramol-rhodalgal carbonate ramp: Miocene of the central Apennines (Italy). In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligocene-Miocene climatic transition, vol 42. Spec Publ Int Assoc Sediment, Blackwell Publishing, pp 107–128

    Google Scholar 

  • Buchbinder B (1977) Systematic and palaeoenvironment of the calcareous algae from the Miocene (Tortonian) Tziqlag Formation, Israel. Micropaleontology 23:415–435

    Article  Google Scholar 

  • Buchbinder B, Halley RB (1985) Occurrence and preservation of Eocene squamariacean and coralline rhodoliths: Eua, Tonga. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin, pp 248–256

    Chapter  Google Scholar 

  • Burgess CJ, Anderson JM (1983) Rhodoids in temperate carbonates from the Cenozoic of New Zealand. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 243–258

    Chapter  Google Scholar 

  • Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS One 5(1):e8963. doi:10.1371/journal.pone.0008963

    Article  Google Scholar 

  • Buss LW (1990) Competition within and between encrusting clonal invertebrates. Trends Ecol Evol 5:352–356

    Article  Google Scholar 

  • Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sediment Geol 60:333–346

    Article  Google Scholar 

  • Chatalov A, Bonev N, Ivanova D (2015) Depositional characteristics and constraints on the mid-Valanginian demise of a carbonate platform in the intra-Tethyan domain, Circum- Rhodope Belt, northern Greece. Cretac Res 55:84–115

    Google Scholar 

  • Checconi A, Bassi D, Monaco P, Carannante G (2010) Re-deposited rhodoliths in the middle Miocene hemipelagic deposits of Vitulano (southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sediment Geol 225:50–66

    Article  Google Scholar 

  • Comarci M, Furnari G, Giaccone G, Colonna P, Mannino AM (1985) Metodo sinecologico per la valutazione degli apporti inquinanti nella rada di Augusta (Siracusa). Bull Acad Gioenia Sci Nat 18:829–850

    Google Scholar 

  • Di Geronimo R, Alongi G, Giaccone G (1993) Formacione organogene a Lithophyllum lichenoides Philippi (Rhodophyta, Corallinales) nel Mesolitorale di Capo S. Alessio (Sicilia orientale). Bull Acad Gioenia Sci Nat 26:145–172

    Google Scholar 

  • Farrow GE, Allen NH, Akpan EB (1984) Bioclastic carbonate sedimentation on a high-latitude, tide-dominated shelf: northeast Orkney Islands, Scotland. J Sediment Res 54:373–393

    Article  Google Scholar 

  • Figueiredo MAO, Norton TA, Kain JM (1997) Settlement and survival of epiphytes on two intertidal crustose coralline algae. J Expl Mar Biol Ecol 213:247–260

    Article  Google Scholar 

  • Flood PG (1983) Coated grains from the great barrier reef. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 561–565

    Chapter  Google Scholar 

  • Flügel E (1978) Mikrofazielle untersuchungsmethoden von Kalken. Springer, Berlin

    Book  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin

    Google Scholar 

  • Focke TW, Gebelein CD (1978) Marine lithification of reef rock and rhodolites at the fore-reef slope locality (50 m) off Bermuda. Geol Mijnb 57:163–171

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 87:659–667

    Article  Google Scholar 

  • Foster MS, Riosmena-Rodríguez R, Steller DS, Woelkerling WJ (1997) Living rhodolith beds in the Gulf of California and their implications for palaeoenvironmental interpretation. In: Johnson ME, Ledesma-Vázquez J (eds) Pliocene carbonates and related facies flaking the Gulf of California, Baja California. Geol Soc Am Spec Pap 318:27139

    Google Scholar 

  • Foster MS, Amado-Filho GM, Kamenos NA, Riosmena-Rodríguez R, Steller DL (2013) Rhodoliths and rhodolith beds. In: Lange M (ed) Smithsonian contributions to the marine sciences no. 39. Smithsonian Institution, pp 143155

    Google Scholar 

  • Fravega P, Piazza M, Vannucci G (1989) Archaeolithothamnium Rothpletz indicatore ecologico-stratigrafico? In: Di Geronimo I (ed) Atti del 3° Simposio di Ecologia e Paleoecologia delle Comunità Bentoniche. Catania, pp 729–743

    Google Scholar 

  • Freiwald A (1998) Modern nearshore cold-temperate calcareous sediment in the Troms District, northern Norway. J Sed Res A 68:763–776

    Article  Google Scholar 

  • Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the arctic circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984

    Article  Google Scholar 

  • Friebe JG (1993) Sequence stratigraphy in a mixed carbonate-siliciclastic depositional system (middle Miocene, Styrian Basin, Austria). Geol Rundsch 82:281–294

    Article  Google Scholar 

  • Georgiadis M, Papatheodorou G, Tzanatos E, Geraga M, Ramfos A, Koutsikopoulos C, Ferentinos G (2009) Coralligene formations in the eastern Mediterranean Sea: morphology, distribution, mapping and relation to fisheries in the southern Aegean Sea (Greece) based on high-resolution acoustics. J Exp Mar Biol Ecol 368:44–58

    Article  Google Scholar 

  • Ginsburg RN, Bosellini A (1973) Form and internal structure of recent algal nodules (rhodolites) from Bermuda: a reply. J Geol 81:239

    Article  Google Scholar 

  • Gordon DC, Masaki T, Akioka H (1976) Floristic and distributional account of the common crustose coralline algae on Guam. Micronesica 12:247–277

    Google Scholar 

  • Graham LE, Graham JM, Wilcox LW (2009) Algae. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Halfar J, Mutti M (2005) Global dominance of coralline red-algal facies: a response to Miocene oceanographic events. Geology 33:481–484

    Article  Google Scholar 

  • Halfar J, Zack T, Kronz A, Zachos JC (2000) Geochemical signals of rhodoliths (coralline red algae) – a new biogenic archive. J Geophys Res 105:22107–22116

    Article  Google Scholar 

  • Halfar J, Hetzinger S, Adey W, Zack T, Gamboa G, Kunz B, Williams B, Jacob DE (2011) Coralline algal growth-increment widths archive north Atlantic climate variability. Palaeogeogr Palaeoclimatol Palaeoecol 302:71–80

    Article  Google Scholar 

  • Hall-Spencer JM, White N, Gillespi E, Gillham K, Foggo A (2006) Impact of fish farms on maerl beds in strongly tidal areas. Mar Ecol Progr Ser 326:1–9

    Article  Google Scholar 

  • Hamel G, Lemoine MP (1953) Corallinacées de France et d’Afrique du Nord. Arch Mus Hist Nat Paris Sér 7(1):15–136

    Google Scholar 

  • Harvey AS, Bird FL (2008) Community structure of a rhodolith bed from cold-temperate waters (southern Australia). Aust J Bot 56:437–450

    Article  Google Scholar 

  • Harvey AS, Broadwater ST, Woelkerling WJ, Mitrovski PJ (2003) Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. J Phycol 39:988–998

    Article  Google Scholar 

  • Hochberg ME, Lawton JH (1990) Competition between kingdoms. Trends Ecol Evol 5:367–371

    Article  Google Scholar 

  • Hottinger L (1983) Neritic macroid genesis, an ecological approach. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 38–55

    Chapter  Google Scholar 

  • Iryu Y, Nakimori T, Matsuda S, Abe O (1995) Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sed Geol 99:243–258

    Article  Google Scholar 

  • Johnson JH (1963) The genus Archaeolithothamnium and its fossil representatives. J Paleontol 37:175–211

    Google Scholar 

  • Johnson ME, Baarli GB, Cachão M, da Silva CM, Ledesma-Vázquez J, Mayoral EJ, Ramalho RS, Santos A (2012) Rhodoliths, uniformitarianism, and Darwin: Pleistocene and recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:83–100

    Article  Google Scholar 

  • Johnson ME, Baarli G, da Silva CM, Cachão M, Ramalho RS, Ledesma-Vázquez J, Mayoral EJ, Santos A (2013) Coastal dunes with high content of rhodolith (coralline red algae) bioclasts: Pleistocene formations on Maio and São Nicolau in the Cape Verde archipelago. Aeolian Res 8:1–9

    Article  Google Scholar 

  • Johnson ME, Ledesma-Vázquez J, Ramalho RS, da Silva CM, Santos A, Baarli G, Mayoral EJ, Cachão M (this volume) Taphonomic range and sedimentary dynamics of modern and fossil rhodolith beds: Macaronesian realm (North Atlantic Ocean). In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/maerl beds: a global perspective. Springer, Berlin

    Google Scholar 

  • Kamenos NA, Cusack M, Moore PG (2008) Red coralline algae are global paleothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72:771–779

    Article  Google Scholar 

  • Kamenos NA, Burdett HL, Darrenougue N (this volume) Coralline algae as recorders of past climatic and environmental conditions. In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/maerl beds: a global perspective. Springer, Berlin

    Google Scholar 

  • Keats DW, Groener A, Chamberlain YM (1993) Cell sloughing in the littoral zone coralline alga, Spongites yendoi (Foslie) Chamberlain (Corallinales, Rhodophyta). Phycologia 32:143–150

    Article  Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record, vol 9, Topics in Geobiology. Plenum Press, New York, pp 115–209

    Chapter  Google Scholar 

  • Kidwell SM, Holland SM (1991) Field description of coarse bioclastic fabrics. Palaios 6:426–434

    Article  Google Scholar 

  • Koop K, Booth D, Broadbent A, Brodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann M, Harrison P, Hoegh-Guildberg O, Hutchings P, Jones GB, Larkum AWD, O’Neil J, Steven A, Tentori E, Ward S, Williamson J, Yellowlees D (2001) Encore: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Pollut Bull 42:91–120

    Article  Google Scholar 

  • Kroeger KF (2007) Upper Miocene coralline red algal associations of central Crete (Greece): taxonomy and palaeoenvironmental implications. N Jb Geol Paläont Abh 244:143–171

    Article  Google Scholar 

  • Kroeger KF, Reuter M, Brachert TC (2006) Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52:381–409

    Article  Google Scholar 

  • Lee RE (2008) Phycology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee D, Carpenter SJ (2001) Isotopic disequilibrium in marine calcareous algae. Chem Geol 172:307–329

    Article  Google Scholar 

  • Leigh EG (1990) Community diversity and environmental stability: a re-examination. Trends Ecol Evol 5:340–344

    Article  Google Scholar 

  • Lemoine PM (1910) Répartition et mode de vie du maërl coralline alga (Lithothamnium calcareum) aux environs de Concameau (Finistère). Ann Inst Océanogr Paris 1:1–29

    Google Scholar 

  • Lemoine PM (1970) Les algues floridées calcaires du Crétacé du Sud de la France. Arch Mus Nat Hist Nat Paris Sér 7(10):129–240

    Google Scholar 

  • Leszczyński S, Kołodziej B, Bassi D, Malata E, Gasiński MA (2012) Depositional history of mixed siliciclastic-carbonate flysch deposits: Paleocene–Eocene transition, Silesian Nappe, Polish Outer Carpathians. Facies 58:367–387

    Article  Google Scholar 

  • Littler DS, Littler MM (2003) South Pacific reef plants. A divers’ guide to the plant life of South Pacific coral reefs. Offshore Graphics, Washington

    Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59

    Article  Google Scholar 

  • Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J Mar Biol Ecol 150:163–182

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies 42:25–34

    Article  Google Scholar 

  • Macintyre IG, Glynn PW, Steneck RS (2001) A classic Caribbean algal ridge, Holandes Cays, Panama: an algal coated storm deposit. Coral Reefs 20:95–105

    Article  Google Scholar 

  • Maneveldt GW, Keats DW (2008) Effects of herbivore grazing on the physiognomy of the coralline alga Spongites yendoi and on associated competitive interactions. Afr J Mar Sci 30:581–593

    Article  Google Scholar 

  • Marrack EC (1999) The relationship between water motion and living rhodolith beds in the southwestern gulf of California, Mexico. Palaios 14:159–171

    Article  Google Scholar 

  • Martín JM, Braga JC (1993) Eocene to Pliocene Coralline Algae in the Queensland Plateau (Northeastern Australia). In: McKenzie JA, Davies PJ, Palmer-Julson A, et al (eds) Proceedings ocean drilling program: scientific results. College Station, TX, 133:67–74

    Google Scholar 

  • Martín JM, Braga JC (1994) Messinian events in the Sorbas basin in southeastern Spain and their implications in the recent history of the Mediterranean. Sed Geol 90:257–268

    Article  Google Scholar 

  • Martín JM, Braga JC, Aguirre J, Betzler C (2004) Contrasting models of temperate carbonate sedimentation in a small Mediterranean embayment: the Pliocene Carboneras Basin, SE Spain. J Geol Soc Lond 161:387–399

    Article  Google Scholar 

  • Martindale W (1992) Calcified epibionts as palaeoecological tools: examples from the recent and Pleistocene reefs of Barbados. Coral Reefs 11:167–177

    Article  Google Scholar 

  • Matsuda S, Iryu Y (2011) Rhodoliths from deep fore-reef to shelf areas around Okinawa-jima, Ryukyu Islands, Japan. Mar Geol 282:215–230

    Article  Google Scholar 

  • McMaster RL, Conover JT (1966) Recent algal stromatolites from the Canary Islands. J Geol 74:647–652

    Article  Google Scholar 

  • McNeil DF, Pisera A (2010) Neogene lithofacies evolution on a small carbonate platform in the Loyalty Basin, Maré, New Caledonia. In: Morgan WA, George AD, Harris PM, Kupecz JA, Sarg JA (eds) Cenozoic carbonate systems of Australasia, vol 95. SEPM Spec Publ, pp 243–255

    Google Scholar 

  • Milliman JD (1977) Role of calcareous algae in Atlantic continental margin sedimentation. In: Flügel E (ed) Fossil algae. Recent results and developments. Springer, Berlin, pp 232–247

    Chapter  Google Scholar 

  • Minnery GA (1990) Crustose coralline algae from the Flower Garden Banks, northwestern gulf of Mexico: controls on distribution and growth morphology. J Sediment Petrol 60:992–1007

    Google Scholar 

  • Minnery GA, Rezak R, Bright TJ (1985) Depth zonation and growth form of crustose coralline algae: Flower Garden Banks, northwestern gulf of Mexico. In: Toomey DF, Nitecki MH (eds) Paleoalgology: contemporary research and applications. Springer, Berlin, pp 237–247

    Chapter  Google Scholar 

  • Molinier R (1956) Les fonds à laminaires du Grand Banc de Centuri (Cap Corse). Com Rendus Acad Sci 342:939–941

    Google Scholar 

  • Montaggioni LF (1979) Environmental significance of rhodolites from the Mascarene Reef Province, western Indian Ocean. Bull Centres Rech Explor Prod Elf-Aquitaine 3:713–723

    Google Scholar 

  • Nalin R, Basso D, Massari F (2006) Pleistocene coralline algal build-ups (coralligéne de plateau) and associated bioclastic deposits in the sedimentary cover of Cutro marine terrace (Calabria, southern Italy). In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geol Soc Lond Spec Publ 255:11–22

    Google Scholar 

  • Nalin R, Nelson CS, Basso D, Massari F (2008) Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from north Island, New Zealand. Sedimentology 55:249–274

    Article  Google Scholar 

  • Nebelsick JH, Rasser M, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216

    Article  Google Scholar 

  • Nebelsick JH, Bassi D, Lempp L (2013) Tracking palaeoenvironmental changes in coralline algal dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy). Facies 59:133–148

    Article  Google Scholar 

  • Nelson W (2009) Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801

    Article  Google Scholar 

  • Orszag-Sperber F, Poignant AF, Poisson A (1977) Paleogeographic significance of rhodolites: some examples from the Miocene of France and Turkey. In: Flügel E (ed) Fossil algae. Recent results and developments. Springer, Berlin, pp 286–294

    Chapter  Google Scholar 

  • OSPAR Commission (2010) Background document for maërl beds. Biodivers Ser, p 34

    Google Scholar 

  • Payri C, N’Yeurt AR, Orempuller J (2000) Algues de Polynésie française. Au Vent des Îles, Singapour

    Google Scholar 

  • Peña V, Bárbara I (2008) Biological importance of an Atlantic maerl bed off Benencia Island (northwest Iberian Peninsula). Bot Mar 51:493–505

    Article  Google Scholar 

  • Peña V, Bárbara I (2009) Distribution of the Galician maerl beds and their shape classes (Atlantic Iberian Peninsula): proposal of areas in future conservation actions. Cah Biol Mar 50:353–368

    Google Scholar 

  • Pérès JM, Picard J (1958) Recherches sur les peuplements benthiques de la Méditerranée nord-orientale. Ann Inst Océanogr Monaco 34:213–291

    Google Scholar 

  • Pérès JM, Picard J (1964) Nouveau Manuel de Bionomie benthique de la mer Méditerranée. Rec Trav Stat Mar Endoume 31(47):1–137

    Google Scholar 

  • Perrin C, Bosence DWJ, Rosen B (1995) Quantitative approaches to palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic reefs. In: Bosence DWJ, Allison PA (eds.) Marine palaeoenvironmental analysis from fossils. Geol Soc Lond Geol Soc Spec Publ 83:181–229

    Google Scholar 

  • Peryt TM (1983) Classification of coated grains. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 3–6

    Chapter  Google Scholar 

  • Prager EJ (1987) The growth and structure of calcareous nodules (for-algaliths) on Florida’s outer shelf. Thesis, Univ Miami, p 65

    Google Scholar 

  • Prager EJ, Ginsburg RN (1989) Carbonate nodule growth on Florida’s outer shelf and its implications for fossil interpretations. Palaios 4:310–317

    Article  Google Scholar 

  • Puga-Bernabéu A, Braga JC, Martín JM (2007) High-frequency cycles in upper-Miocene ramp-temperate carbonates (Sorbas Basin, SE Spain). Facies 53:329–345

    Article  Google Scholar 

  • Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard Member (Chattian, Malta). Geodiversitas 34:151–166

    Article  Google Scholar 

  • Rahimpour-Bonab H, Bone Y, Moussavi-Harami R, Turnbull K (1997) Geochemical comparisons of modern cool-water calcareous biota, Lacepede Shelf, south Australia. In: James NP, Clarke JAD (eds) Cool-water carbonates. Spec Publ SEPM Soc Sediment Geol 56:77–92

    Google Scholar 

  • Rasser MW, Piller WE (1997) Depth distribution of calcareous encrusting associations in the northern Red Sea (Safaga, Egypt) and their geological implications. Proc 8th Int Coral Reef Symp 1:743–748

    Google Scholar 

  • Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeogr Palaeoclimatol Palaeoecol 206:21–39

    Article  Google Scholar 

  • Reid RP, MacIntyre IG (1988) Foraminiferalalgal nodules from the Eastern Caribbean: growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios 3:424–435

    Article  Google Scholar 

  • Richter DK, Sedat R (1983) Brackish-water oncoids composed of blue-green and red algae from a Pleistocene terrace near Corinth, Greece. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 299–307

    Chapter  Google Scholar 

  • Ringeltaube P, Harvey A (2000) Non-geniculate coralline algae (Corallinales, Rhodophyta) on Heron Reef. Great Barrier Reef (Australia) Bot Mar 43:431–454

    Google Scholar 

  • Riosmena-Rodríguez R, Steller DL, Hinojosa-Arango G, Foster MS (2010) Reefs that rock and roll: biology and conservation of rhodolith beds in the gulf of California. In: Brusca RC (ed) The gulf of California biodiversity and conservation. The University of Arizona Press and The Arizona-Sonora Desert Museum, Tucson, pp 49–71

    Google Scholar 

  • Riul P, Targino CH, Farias JDN, Visscher PT, Horta PA (2008) Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. J Mar Biol Assoc UK 88:17–19

    Article  Google Scholar 

  • Round EF (1981) The ecology of algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Sánchez-Almazo IM, Spiro B, Braga JC, Martín JM (2001) Constraints of stable isotope signatures on the depositional palaeoenvironments of upper Miocene reef and temperate carbonates in the Sorbas basin, SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:153–172

    Article  Google Scholar 

  • Schaefer TN, Smith J, Foster MS, De Tomaso A (2002) Genetic differences between two growth-forms of Lithophyllum margaritae (Rhodophyta) in Baja California Sur, Mexico. J Phycol 38:1090–1098

    Article  Google Scholar 

  • Schäfer P, Fortunato H, Bader B, Liebetrau V, Bauch T, Reijmer JJG (2011) Growth rates and carbonate production by coralline red algae in upwelling and non-upwelling settings along the Pacific coast of Panama. Palaios 26:420–432

    Article  Google Scholar 

  • Simone L, Bassi D, Carannante G, Cherchi A (2012) Rudist-bearing rhodalgal facies in the post-Turonian recovery of the periTethyan carbonate systems: the case history from the Nurra Region (northwestern Sardinia, Italy). Geodiversitas 34:167–187

    Article  Google Scholar 

  • Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. J Geol 66:114–150

    Article  Google Scholar 

  • Steller DL, Cáceres C (2009) Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Mar Ecol Progr Ser 396:49–60

    Article  Google Scholar 

  • Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepción, B.C.S., México. J Exp Mar Biol Ecol 194:201–212

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodríguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv 13:S5–S20

    Article  Google Scholar 

  • Steller DL, Foster MS, Riosmena-Rodríguez R (2009) Living rhodolith bed ecosystems in the gulf of California. In: Johnson JM, Ledesma-Vázquez J (eds) Atlas of coastal ecosystems in the gulf of California: past and present. University of Arizona Press, Tucson, pp 72–82

    Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61

    Article  Google Scholar 

  • Steneck RS (1985) Adaptations of crustose coralline algae to herbivory: patterns in space and time. In: Toomey D, Nitecki M (eds) Paleoalgology: contemporary research and applications. Springer, Berlin, pp 352–366

    Chapter  Google Scholar 

  • Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Ann Rev Ecol Syst 17:273–303

    Article  Google Scholar 

  • Tomás S, Aguirre J, Braga JC, Martín-Closas C (2007) Late Hauterivian coralline algae (Rhodophyta, Corallinales) from the Iberian Chain (E Spain). Taxonomy and the evolution of multisporangial reproductive structures. Facies 53:79–95

    Article  Google Scholar 

  • van der Hoeck C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Verheij E (1993) The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia. Phycologia 32:184–196

    Article  Google Scholar 

  • Verheij E, Erftemeijer PLA (1993) Distribution of seagrasses and associated macroalgae in south Sulawesi, Indonesia. Blumea 38:45–64

    Google Scholar 

  • Villas-Boas AB, Tâmega FTS, Coutinho MAR, Figueiredo MAO (2014) Experimental effects of sediment burial and light attenuation on two coralline algae of a deep water rhodolith bed in Rio de Janeiro, Brazil. Cryptogam Algol 35:67–76

    Article  Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 12:283–293

    Google Scholar 

  • Woelkerling WJ (1988) The coralline red algae: an analysis of the genera and subfamilies of nongeniculate corallinaceae. Oxford University Press, Oxford, 268 pp

    Google Scholar 

  • Woelkerling WJ (1996a) Subfamily Mastophoroideae Setchell 1943. In: Womersley HBS (ed) The marine benthic flora of southern Australia. Rhodophyta. Part IIIB, Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Aust Biol Resources Study, Canberra, pp 237–283

    Google Scholar 

  • Woelkerling WJ (1996b) Family Sporolithaceae. In: Womersley HBS (ed) The marine benthic flora of southern Australia. Rhodophyta. Part IIIB, Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Aust Biol Resources Study, Canberra, pp 153–158

    Google Scholar 

  • Woelkerling WJ (1996c) Subfamily Lithophylloideae Setchell 1943. In: Womersley HBS (ed) The marine benthic flora of southern Australia. Rhodophyta. Part IIIB, Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Aust Biol Resources Study, Canberra, pp 214–237

    Google Scholar 

  • Woelkerling WJ (1996d) Subfamily Melobesioideae Bizzozero 1885. In: Womersley HBS (ed) The marine benthic flora of southern Australia. Rhodophyta. Part IIIB, Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Aust Biol Resources Study, Canberra, pp 164–210

    Google Scholar 

  • Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the research projects CGL2013-47236-P, of the Ministerio de Ciencia e Innovación of Spain, and RNM-190 of the Junta de Andalucía. We thank David Nesbitt for the correction of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aguirre, J., Braga, J.C., Bassi, D. (2017). Rhodoliths and Rhodolith Beds in the Rock Record. In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_5

Download citation

Publish with us

Policies and ethics