Skip to main content

Advertisement

Log in

Soil carbon storage, respiration potential, and organic matter quality across an age and climate gradient in southwestern Greenland

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Geological factors influence biological cycling of organic carbon in soils but are not well represented in our understanding of Arctic carbon dynamics. Landscape age, for instance, directly affects quantity and quality of soil carbon, which are two strong controls of the temperature sensitivity of soil organic matter. We investigated soil carbon storage, respiration potential, and organic matter quality for microbial decomposition across a climate and landscape age gradient in southwest Greenland that deglaciated during the Holocene. We measured soil respiration during a 370-day laboratory incubations of active layer soils collected from four study areas across this gradient (ages 1.8 × 102, 6.8 × 103, and 1.0 × 104, coinciding with a climate gradient from drier inland to wetter coastal terrain) and used a soil respiration model comparison approach to assess the substrate quality of stored organic matter for microbial decomposers. Soils store more than three times greater organic carbon at the 10,000-year-old, maritime climate study areas than the 180-year-old, continental climate study areas. Respiration rates were highest in the surface soils of the coastal areas. Model comparisons reveal important heterogeneity in the quality of organic matter for microbial decomposition between areas: coastal soils were best modeled by both one- and two-pooled models, and inland soils were best represented by one-pooled respiration models. Together, the measures of carbon quality (C:N, CO2 production, and model parameters estimating initial CO2 production rates from different organic matter pools) show that shallow soils at the southern coastal area, Kobbefjord, had the highest respiration rates from the recalcitrant carbon pool. This study reveals differences in carbon storage and turnover associated with landscape age and climate factors in western Greenland. When applied to thermodynamic theory, which predicts that temperature sensitivity increases with carbon recalcitrance, our findings suggest that carbon stored in coastal soils may be more sensitive to climate warming than inland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson NJ, D’Andrea W, Fritz SC (2009) Holocene carbon burial by lakes in SW Greenland. Glob Change Biol 15:2590–2598. doi:10.1111/j.1365-2486.2009.01942.x

    Article  Google Scholar 

  • Bennike O (2000) Palaeoecological studies of Holocene lake sediments from west Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 155:285–304. doi:10.101/S0031-0184(99)00121-2

    Article  Google Scholar 

  • Bockheim JG, Hinkel KM, Eisner WR, Dai XY (2004) Carbon pools and accumulation rates in an age-series of soils in drained thaw-lake basins, Arctic Alaska. Soil Sci Soc Am J 68:697–704. doi:10.2136/sssaj2004.6970

    Article  CAS  Google Scholar 

  • Bosatta E, Agren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891. doi:10.1016/S0038-0717(99)00105-4

    Article  CAS  Google Scholar 

  • Chapin FS, Shaver GR (1989) Differences in growth and nutrient use among arctic plant growth forms. Funct Ecol 3:73–80. doi:10.2307/2389677

    Article  Google Scholar 

  • Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvonen R, Kirschbaum MUF, Lavalle JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Martin Wetterstedt JA, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404. doi:10.1111/j.1365-2486.2011.02496.x

    Article  Google Scholar 

  • Crocker RL, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–448

    Article  Google Scholar 

  • Curiel Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13:1–18. doi:10.1111/j.1365-2486.2007.01415.x

    Article  Google Scholar 

  • Danish Meteorological Institute. Climatic Normals for Greenland. http://www.dmi.dk/groenland/arkiver/klimanormaler/. Accessed 23 Sept 2014

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115. doi:10.1146/annurev.energy.30.050504.144212

    Article  Google Scholar 

  • Elzein T, Blarquez O, Gauthier O, Carcaillet C (2011) Allometric equations for biomass assessment of subalpine dwarf shrubs. Alp Bot 121:129–134

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–435. doi:10.2307/2937049

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210. doi:10.1046/j.1365-2486.2000.06021.x

    Article  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593. doi:10.5194/bg-11-6573-2014

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. Dover Publications, New York

    Google Scholar 

  • Jensen L, Schmidt L, Hollesen J, Elberling B (2006) Accumulation of soil organic carbon linked to Holocene sea level changes in West Greenland. Arct Antarct Alp Res 38(3):378–383. doi:10.1657/1523-0430(2006)38[378:AOSOCL]2.0.CO;2

    Article  Google Scholar 

  • Jones A, Stolbovoy V, Tarnocai C, Broll G, Spaargaren O, Montanarella O (2009) Soil atlas of the Northern Circumpolar Region. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Karhu K, Auffret MD, Dungait AJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastia MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84. doi:10.1038/nature13604

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer EM (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob Change Biol 19:1160–1172. doi:10.1111/gcb.12116

    Article  Google Scholar 

  • Levy LB, Kelly MA, Howley JA, Virginia RA (2012) Age of the Orkendalen moraines, Kangerlussuaq, Greenland: constraints on the extent of the southwestern margin of the Greenland Ice Sheet during the Holocene. Quat Sci Rev 52:1–5. doi:10.1016/j.quascirev.2012.07.021

    Article  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79(4):523–555. doi:10.1890/08-2025.1

    Article  Google Scholar 

  • Mernild SH, Hanna E, McConnell JR, Sigl M, Beckerman AP, Yde JC, Cappelen J, Malmros JK, Steffen K (2015) Greenland precipitation trends in a long-term instrumental climate context (1890–2012): evaluation of coastal and ice core records. Int J Climatol 35:303–320. doi:10.1002/joc.3986

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 72:242–253. doi:10.2307/1938918

    Article  Google Scholar 

  • Nielsen UN, Wall DH (2013) The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol Lett 16:409–419. doi:10.1111/ele.12058

    Article  PubMed  Google Scholar 

  • Ozols U, Broll G (2003) Soil ecological processes in vegetation patches of well drained permafrost affected sites (Kangerlussuaq—West Greenland). Polarforschung 73:5–14. http://hdl.handle.net/10013/epic.29907

    Google Scholar 

  • Riggs CE, Hobbie SE, Bach EM, Hofmockel KS, Kazanski CE (2015) Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry 125:203–219. doi:10.1007/s10533-015-0123-2

    Article  CAS  Google Scholar 

  • Roberts DH, Long AJ, Schnabel C, Davies BJ, Xu S, Simpson MJR, Huybrechts P (2009) Ice sheet extent and early deglaciation history of the southwestern sector of the Greenland Ice Sheet. Quat Sci Rev 28:2760–2773. doi:10.1016/j.quascirev.2009.07.002

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber Markus, Kogel-knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Shaver GR, Bret-Harte SM, Jones MH, Johnstoone J, Gough L, Laundre J, Chapin FS (2001) Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163–3181. doi:10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2

    Article  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaska tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–753. doi:10.1111/j.1365-2745.2006.01139.x

    Article  CAS  Google Scholar 

  • Sjogersten S, Wookey PA (2005) The role of soil organic matter quality and physical environment for nitrogen mineralization at the forest-tundra ecotone in Fennoscandia. Arct Antarct Alp Res 37:118–126. doi:10.1657/1523-0430(2005)037[0118:TROSOM]2.0.CO;2

    Article  Google Scholar 

  • Stieglitz M, Shaman J, McNamara J, Engel V, Shanley J, Kling GW (2003) An approach to understanding hydrologic conductivity on the hillslope and the implications for nutrient transport. Glob Biogeochem Cycles. doi:10.1029/2003GB002041

    Google Scholar 

  • Sullivan PF, Arens SJT, Chimner RA, Welker JM (2008) Temperature and microtopography interact to control carbon cycling in a high arctic fen. Ecosystems 11:61–76. doi:10.1007/s10021-007-9107-y

    Article  CAS  Google Scholar 

  • Van Wijk MG, Clemmensen KE, Shaver GR, Williams M, Callaghan TV, Chapin FS, Cornelissen JHC, Gough L, Hobbie SE, Jonasson S, Lee JA, Michelsen A, Press MC, Richardson SJ, Rueth H (2003) Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob Change Biol 10:105–123. doi:10.1111/j.1365-2486.2003.00719.x

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005) Nitrogen cycling and the spread of shrubs control changes in the carbon balance of arctic tundra ecosystems. Bioscience 55:408–415. doi:10.1641/0006-3568(2005)055[0408:NCATSO]2.0.CO;2

    Article  Google Scholar 

  • Whittinghill KA, Hobbie SE (2011) Effects of Landscape Age on Soil Organic Matter Processing in Northern Alaska. Soil Sci Soc Am J 75:907–917. doi:10.2136/sssaj2010.0318

    Article  CAS  Google Scholar 

  • Whittinghill KA, Hobbie SE (2012) Effects of pH and calcium on soil organic matter dynamics in Alaska tundra. Biogeochemistry 111:569–581. doi:10.1007/s10533-011-9688-6

    Article  CAS  Google Scholar 

  • Zona D, Lipson DA, Zulueta RC, Oberbauer SF, Oechel WC (2011) Microtopographic controls on ecosystem functioning in the Arctic coastal plain. J Geophys Res 116:1–12. doi:10.1029/2009JG00124

    Article  Google Scholar 

Download references

Acknowledgments

We thank Courtney Hammond-Wagner and Phoebe Racine for assistance in the field and laboratory. Angela Spickard and Paul Zietz at Dartmouth provided laboratory support. We are grateful to Josephine Nymand, Louise Holm Christensen, and Stine Hojlund Pedersen for guidance and hospitality at Nuuk Basic Field Station in Kobbefjord; CH2M Hill Polar Services for logistical support in Kangerlussuaq; Lauren Culler for providing comments on the manuscript. This research was supported by a grant from The Explorers Club Exploration Fund to Julia Bradley-Cook and a National Science Foundation IGERT Grant (Award No.: 0801490) to Ross Virginia. Additional support was provided by the Institute of Arctic Studies, Dickey Center for International Understanding, Dartmouth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia I. Bradley-Cook.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley-Cook, J.I., Virginia, R.A. Soil carbon storage, respiration potential, and organic matter quality across an age and climate gradient in southwestern Greenland. Polar Biol 39, 1283–1295 (2016). https://doi.org/10.1007/s00300-015-1853-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1853-2

Keywords

Navigation