Skip to main content

Advertisement

Log in

Temperature and Microtopography Interact to Control Carbon Cycling in a High Arctic Fen

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

High arctic wetlands hold large stores of soil carbon (C). The fate of these C stores in a changing climate is uncertain, as rising air temperatures may differentially affect photosynthesis and ecosystem respiration (ER). In this study, open-top warming chambers were used to increase air and soil temperatures in contrasting microtopographic positions of a high arctic fen in NW Greenland. CO2 exchange between the ecosystem and the atmosphere was measured on 28 dates over a 3-year period. Measurements of the normalized difference vegetation index, leaf and stem growth, leaf-level gas exchange, leaf nitrogen, leaf δ13C, and fine root production were made to investigate the mechanisms and consequences of observed changes in CO2 exchange. Gross ecosystem photosynthesis (GEP) increased with chamber warming in hollows, which are characterized by standing water, and in hummocks, which extend above the water table. ER, however, increased only in hummocks, such that net ecosystem exchange (NEE) increased in hollows, but did not change in hummocks with chamber warming. Complementary measurements of plant growth revealed that increases in GEP corresponded with increases in C allocation to aboveground biomass in hummocks and belowground biomass in hollows. Our results and those of several recent studies clearly demonstrate that effects of climate change on the C balance of northern wetlands will depend upon microtopography which, in turn, may be sensitive to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • ACIA (2004) Impacts of a warming climate: arctic climate impact assessment. University Press, Cambridge

    Google Scholar 

  • Alm J, Schulman L, Walden J, Nykanen H, Martikainen PJ, Silvola J (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–74

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J (2002) Annual CO2 balance of a sub-arctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res 107:4607

    Article  CAS  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Chang Biol 10:1043–52

    Article  Google Scholar 

  • Billings WD, Luken JO, Mortensen DA, Peterson KM (1982) Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53:7–11

    Article  Google Scholar 

  • Billings WD, Peterson KM, Luken JO, Mortensen DA (1984) Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65:26–9

    Article  Google Scholar 

  • Bockheim JG, Everett LR, Hinkel KM, Nelson FE, Brown J (1999) Soil organic carbon storage and distribution in arctic tundra, Barrow, Alaska. Soil Sci Soc Am J 63:934–40

    Article  CAS  Google Scholar 

  • Boelman NT, Stieglitz M, Rueth HM, Sommerkorn M, Griffin KL, Shaver GR, Gamon JA (2003) Response of NDVI, biomass, and ecosystem gas exchange to long-term fertilization and warming in wet sedge tundra. Oecologia 135:414–21

    PubMed  Google Scholar 

  • Boelman NT, Stieglitz M, Griffin KL, Shaver GR (2005) Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra. Oecologia 143:588–97

    Article  PubMed  Google Scholar 

  • Chapin FS III (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2:47–52

    Article  Google Scholar 

  • Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bull Am Meteorol Soc 74:33–47

    Article  Google Scholar 

  • Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S (2000) Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochem Cycles 14:701–13

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–37

    Article  CAS  Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–93

    CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable response to climatic warming. Ecol Appl 1:182–95

    Article  Google Scholar 

  • Griffis TJ, Rouse WR, Waddington JM (2000) Interannual variability of net ecosystem CO2 exchange at a sub-arctic fen. Global Biogeochem Cycles 14:1109–21

    Article  CAS  Google Scholar 

  • Heikkinen JEP, Elsakov V, Martikainen PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochem Cycles 16:1115

    Article  CAS  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelsen FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–98

    Article  Google Scholar 

  • Hollister RD, Webber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Chang Biol 6:835–42

    Article  Google Scholar 

  • Hooper DU, Cardon ZG, Chapin FS III, Durant M (2002) Corrected calculations for soil and ecosystem measurements of CO2 flux using the LI-COR 6200 portable photosynthesis system. Oecologia 132:1–11

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: the physical science basis. Cambridge University Press

  • Johansson T, Malmer N, Crill PM, Friborg T, Akerman JH, Mastepanov M, Christensen TR (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Chang Biol 12:2352–69

    Article  Google Scholar 

  • Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadelhoffer K, Giblin A, Laundre J, Stanley A (2000) Plant carbon–nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81:453–69

    Google Scholar 

  • Joiner DW, Lafleur PM, McCaughey JH, Bartlett PA (1999) Inter-annual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J Geophys Res 104:27663–72

    Article  CAS  Google Scholar 

  • Kelly M, Funder S, Houmark-Nielsen M, Knudsen KL, Kronborg C, Landvik J, Sorby L (1999) Quaternary glacial and marine environmental history of northwest Greenland: a review and reappraisal. Quaternary Sci Rev 18:373–92

    Article  Google Scholar 

  • Kennedy AD (1995) Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments. Funct Ecol 9:340–50

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao X-Q (2005) Dynamic and complex microclimate responses to warming and grazing manipulations. Glob Chang Biol 11:1440–51

    Article  Google Scholar 

  • Körner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1:179–94

    Article  Google Scholar 

  • Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem Cycles 17:1036

    Article  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin

    Google Scholar 

  • Lin G, Ehleringer JR (1997) Carbon isotopic discrimination does not occur during dark respiration in C3 and C4 plants. Plant Physiol 114:391–4

    PubMed  CAS  Google Scholar 

  • Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32 Suppl

    Google Scholar 

  • Michaelson GJ, Ping CL, Kimble JM (1996) Carbon storage and distribution in tundra soils of Arctic Alaska, USA. Arct Alp Res 28:414–24

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–53

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101(26):9689–93

    Article  PubMed  CAS  Google Scholar 

  • Nordstroem C, Soegaard H, Christensen TR, Friborg T, Hansen BU (2001) Seasonal carbon dioxide balance and respiration of a high-arctic fen ecosystem in NE-Greenland. Theor Appl Climatol 70:149–66

    Article  Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 72:221–38

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in arctic CO2 flux over two decades: effects of climate change at Barrow, Alaska. Ecol Appl 5:846–55

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Ault RP Jr, Bryant P (1998) Effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Glob Chang Biol 4:77–90

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change over the last four centuries. Science 278:1251–6

    Article  CAS  Google Scholar 

  • Ping CL, Michaelson GJ, Kimble JM (1997) Carbon storage along a latitudinal transect in Alaska. Nutr Cycl Agroecosyst 49:235–42

    Article  CAS  Google Scholar 

  • Rennermalm AK, Soegaard H, Nordstroem C (2005) Interannual variability in carbon dioxide exchange from a high arctic fen estimated by measurements and modeling. Arct Antarct Alp Res 37:545–56

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Shaver GR, Billings WD (1975) Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology 56:401–9

    Article  Google Scholar 

  • Shaver GR, Chapin FS III (1991) Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31

    Article  Google Scholar 

  • Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998) Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecol Monogr 68:75–97

    Google Scholar 

  • Soegaard H, Nordstroem C (1999) Carbon dioxide exchange in a high arctic fen estimated by eddy covariance measurements and modeling. Glob Chang Biol 5:547–62

    Article  Google Scholar 

  • Soegaard H, Nordstroem C, Friborg T, Hansen BU, Christensen TR, Bay C (2000) Trace gas exchange in a high-arctic valley 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. Global Biogeochem Cycles 14:725–44

    Article  CAS  Google Scholar 

  • Steltzer H, Welker JM (2006) Modeling the effect of photosynthetic vegetation properties on the NDVI-LAI relationship. Ecology 87:2765–72

    Article  PubMed  Google Scholar 

  • Sternberg LDL, Mulkey SS, Wright SJ (1989) Ecological interpretation of leaf carbon isotope ratios: influence of respired carbon dioxide. Ecology 70:1317–24

    Article  Google Scholar 

  • Strack M, Waddington JM, Rochefort L, Tuittila ES (2006) Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms to water table drawdown. J Geophys Res 111:G02006

    Article  CAS  Google Scholar 

  • Sullivan PF, Welker JM (2007) Variation in leaf physiology of Salix arctica within and across ecosystems in the High Arctic: test of a dual isotope (Δ13C and Δ18O) conceptual model. Oecologia 151:372–86

    Article  PubMed  Google Scholar 

  • Sullivan PF, Sommerkorn M, Rueth H, Nadelhoffer KJ, Shaver GR, Welker JM (2007) Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153:643–52

    Article  PubMed  Google Scholar 

  • Tieszen LL (1972) The seasonal course of aboveground production and chlorophyll distribution in a wet arctic tundra at Barrow, Alaska. Arct Alp Res 4:307–24

    Article  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulations. Ecol Appl 11:311–26

    Google Scholar 

  • Vourlitis GL, Oechel WC, Hastings SJ, Jenkins MA (1993) A system for measuring in situ CO2 and CH4 flux in unmanaged ecosystems: an arctic example. Funct Ecol 7:369–79

    Article  Google Scholar 

  • Waddington J, Roulet NT (1996) Atmosphere-wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochem Cycles 10:233–45

    Article  CAS  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–6

    Article  PubMed  CAS  Google Scholar 

  • Webber PJ (1978) Spatial and temporal variation of the vegetation and its productivity. In: Tieszen LL (ed.) Vegetation and production ecology of an Alaskan arctic tundra. Springer-Verlag, New York, New York, pp 37–112

    Google Scholar 

  • Wieder RK (2001) Past, present and future peatland carbon balance: an empirical model based on 210Pb-dated cores. Ecol Appl 11:327–42

    Google Scholar 

  • Zoltai SC, Martikainen PJ (1996) The role of forested peatlands in the global carbon cycle. NATO ASI Ser I 40:47–58

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants #0221606 and 0528748 from the National Science Foundation. We thank M. Smith, J. DeCant, H. Ohms, S. Cahoon, K. Persson and M. Rogers for field assistance. The comments of two anonymous reviewers substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick F. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, P.F., Arens, S.J.T., Chimner, R.A. et al. Temperature and Microtopography Interact to Control Carbon Cycling in a High Arctic Fen. Ecosystems 11, 61–76 (2008). https://doi.org/10.1007/s10021-007-9107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9107-y

Keywords

Navigation