Skip to main content
Log in

Life history of the Antarctic tardigrade, Acutuncus antarcticus, under a constant laboratory environment

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Tardigrades are found in most terrestrial and freshwater Antarctic ecosystems and are one of the most diverse and important groups of invertebrates in Antarctica. We developed a new laboratory system for rearing the Antarctic tardigrade Acutuncus antarcticus (Richters 1904), one of the most widespread and common Antarctic tardigrade species. To provide a description of the life history of this tardigrade, survival and reproduction of 68 individuals were observed and recorded daily at a constant temperature of 15 °C. The life-history data obtained are consistent with previous studies of other tardigrades. The exceptionally high hatching success obtained is suggested to be an important life-history characteristic of this species contributing to it often being a common and dominant species in the Antarctic habitats in which it occurs. Furthermore, high hatching success combined with very low variation in development time, under the protocol used in the current study, indicates that A. antarcticus may be a good model species for studies in developmental biology. Integrating data from this and previous studies, the importance of temperature on reproduction and growth in A. antarcticus was inferred. With terrestrial and freshwater ecosystems in some parts of Antarctica experiencing sometimes drastic contemporary climatic and environmental changes, studies of the effect of temperature on generation time and reproductive success in Antarctic tardigrades are urgently required, as these animals are important elements of community structure and function in polar ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams B, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell J, Frati F, Hogg I, Newsham N, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Altiero T, Rebecchi L, Bertolani R (2006) Phenotypic variations in the life history of two clones of Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Hydrobiologia 558:33–40

    Article  Google Scholar 

  • Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morph Syst 1:107–186

    Google Scholar 

  • Baumann H (1970) Lebenslauf und Lebensweise von Macrobiotus hufelandi Schultze (Tardigrada). Veroff Ubersee-Mus Bremen 4:29–43 (Article in German)

    Google Scholar 

  • Bertolani R (1983) Tardigrada. Oogenesis, oviposition, and oosorption. In: Adiodi KG, Adyodi RG (eds) Reproductive biology of invertebrates, vol 1. Wiley, Chichester, pp 431–441

    Google Scholar 

  • Block W, Smith RIL, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484

    Article  CAS  PubMed  Google Scholar 

  • Convey P (1997) How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J Thermal Biol 22:429–440

    Article  Google Scholar 

  • Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641

    Article  Google Scholar 

  • Convey P, McInnes SJ (2005) Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86:519–527

    Article  Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Dastych H (1984) The Tardigrada from Antarctic with descriptions of several new species. Acta Zool Cracov 27:377–436

    Google Scholar 

  • Dastych H (1991) Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitt Hamb Zool Mus Inst 88:141–159

    Google Scholar 

  • Degma P, Bertolani R, Guidetti R (2009–2014) Actual checklist of Tardigrada species (ver. 26, 10-07-2014). http://www.tardigrada.modena.unimo.it/miscellanea/ActualchecklistofTardigrada.pdf

  • Dougherty E (1964) Cultivation and nutrition of micrometazoa. II. An Antarctic strain of the tardigrade Hypsibius arcticus (Murray, 1907) Marcus, 1928. Trans Am Microsc Soc 83:7–11

    Article  Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559

    Article  CAS  PubMed  Google Scholar 

  • Galkovskaja A (1987) Planktonic rotifers and temperature. Hydrobiologia 147:307–317

    Article  Google Scholar 

  • Gibson JAE, Comer L, Agius JT, McInnes SJ, Marley NJ (2007) Tardigrade eggs and exuviae in Antarctic lake sediments: insights into Holocene dynamics and origins of the fauna. J Limnol 66(s1):65–71

    Article  Google Scholar 

  • Guidetti R, Rebecchi L, Cesari M, McInnes SJ (2014) Mopsechiniscus franciscae, a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biol 37:1221–1233

    Article  Google Scholar 

  • Hogg ID, Stevens MI, Wall DH (2014) Invertebrates. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 55–78

    Chapter  Google Scholar 

  • Hohberg K (2006) Tardigrade species composition in young soils and some aspects on life history of Macrobiotus richtersi J. Murray, 1911. Pedobiologia 50:267–274

    Article  Google Scholar 

  • Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556

    Article  CAS  PubMed  Google Scholar 

  • Kagoshima H, Imura S, Suzuki AC (2013) Molecular and morphological analysis of an Antarctic tardigrade, Acutuncus antarcticus. J Limnol 72(s1):15–23

    Google Scholar 

  • Kinchin I (1994) The biology of tardigrades. Portland Press Ltd, London, p 186

    Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing lifespan. Mech Ageing Dev 6:413–429

    Article  CAS  PubMed  Google Scholar 

  • Lamb MJ (1968) Temperature and lifespan in Drosophila. Nature 220:808–809

    Article  CAS  PubMed  Google Scholar 

  • Lemloh ML, Brümmer F, Schill RO (2011) Life history traits of bisexual tardigrades: Paramacrobiotus tonollii and Macrobiotus sapiens. J Zool Syst Evol Res 49(Suppl 1):58–61

    Article  Google Scholar 

  • Marcus E (1928) Spinnentiere oder Arachnoidea IV: Bärtierchen (Tardigrada). Springer, Jena

    Google Scholar 

  • Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38:3141–3151

    Article  CAS  Google Scholar 

  • McInnes SJ (1995) Tardigrades from Signy Island, South Orkney Islands, with particular reference to freshwater species. J Nat Hist 29:1419–1445

    Article  Google Scholar 

  • Michalczyk L, Welnicz W, Frohme M, Kaczmarek L (2012) Redescriptions of three Milnesium Doyere, 1840 taxa (Tardigrada: Eutardigrada: Milnesiidae), including the nominal species for the genus. Zootaxa 3154:1–20

    Google Scholar 

  • Peck L, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Pérez-Legaspi IA, Rico-Martínez R (1998) Effect of temperature and food concentration in two species of littoral rotifers. Hydrobiologia 387(388):341–348

    Article  Google Scholar 

  • Pilato G, Binda MG (1997) Acutuncus, a new genus of Hypsibiidae (Eutardigrada). Entomol Mitt Zool Mus Hamb 12:159–162

    Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Richard Harrigan P (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  CAS  PubMed  Google Scholar 

  • Sarma SSS, Rao TR (1991) The combined effects of food and temperature on the life history parameters of Brachionus patulus Müller (Rotifera). Int Revue Hydrobiol 76:225–239

    Article  Google Scholar 

  • Schill RO (2013) Life-history traits in the tardigrade species Paramacrobiotus kenianus and Paramacrobiotus palaui. J Limnol 72(s1):160–165

    Google Scholar 

  • Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade. J Zool 276:103–107

    Article  Google Scholar 

  • Smith RIL (1988) Recording bryophyte microclimate in remote and severe environments. In: Glime JM (ed) Methods in bryology. Hattori Botanical Laboratory, Nichinan, pp 275–284

    Google Scholar 

  • Sohlenius B, Boström S (2008) Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol 31:817–825

    Article  Google Scholar 

  • Suzuki AC (2003) Life history of Milnesium tardigradum Doyere (Tardigrada) under a rearing environment. Zool Sci 20:49–57

    Article  PubMed  Google Scholar 

  • Tsujimoto M, McInnes SJ, Convey P, Imura S (2014) Preliminary description of tardigrade species diversity and distribution pattern around coastal Syowa Station and inland Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Polar Biol 37:1361–1367

    Article  Google Scholar 

  • Turner J, Bindchadler R, Convey P, Di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewski P, Summerhayes C (eds) (2009) Antarctic climate change and the environment. Scientific Committee on Antarctic Research, Cambridge

    Google Scholar 

  • Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, Stevens MI (2014a) Distribution and diversity of microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE 9:e87529

    Article  PubMed Central  PubMed  Google Scholar 

  • Velasco-Castrillón A, Gibson JAE, Stevens MI (2014b) A review of current Antarctic limno-terrestrial microfauna. Polar Biol 37:1517–1531

    Article  Google Scholar 

  • Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531

    Article  Google Scholar 

Download references

Acknowledgments

We thank Daiki Horikawa and Hiroshi Kagoshima for useful advice in establishing the rearing method and data collection. Peter Convey, Sandra McInnes and three anonymous reviewers provided helpful comments and advice on the manuscript. This study was supported by Grant-in-Aid for Scientific Research No. 23247012 to SI from the Japan Society for the Promotion of Science, and also contributes to the SCAR AnT-ERA research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumu Tsujimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujimoto, M., Suzuki, A.C. & Imura, S. Life history of the Antarctic tardigrade, Acutuncus antarcticus, under a constant laboratory environment. Polar Biol 38, 1575–1581 (2015). https://doi.org/10.1007/s00300-015-1718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1718-8

Keywords

Navigation