Skip to main content

Advertisement

Log in

Thyroid hormones and deiodinase activities in plasma and tissues from East Greenland polar bears (Ursus maritimus) during winter season

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Thyroid hormones (THs) are essential for metabolism and thermoregulation in arctic animals. Still, there is a lack of deeper basic knowledge regarding the regulation and functioning of THs in the environmental physiology of polar bears (Ursus maritimus). This is necessary in order to understand the true impact and consequences of the combination of stressors such as depletion of sea ice and endocrine-disrupting contaminants for the polar bear species. As a first step to gain insight into TH physiology in polar bears, TH concentrations in liver, kidney and muscle in East Greenland polar bears sampled February–March 2011 were analysed and their associations with circulating levels of THs were investigated. In addition, type 1 deiodinase (D1) activities in liver, kidney and muscle and type 2 deiodinase (D2) activities in muscle were analysed. Concentrations of 3,5,3′,5′-tetraiodothyronine (T4) were highest in plasma, followed by liver, kidney and muscle, whereas concentrations of 3,5,3′-triiodothyronine (T3) were highest in kidney followed by liver, plasma and muscle. D1 activities in the tissues varied in the order liver > kidney ≫ muscle, while D2 activity was only analysed in muscle. There were significant positive relationships between T4 in plasma and liver as well as between T4 in plasma and D1 activity in liver. This implies that liver is an important non-thyroidal organ for deiodination of T4, thus providing T3 to the plasma pool, in polar bears. The polar bears with the lowest body condition also had the lowest concentrations of free T3 in plasma and D2 activities in muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araujo R, Andrade B, da Silva M, Ferreira A, Carvalho D (2009) Tissue-specific deiodinase regulation during food restriction and low replacement dose of leptin in rats. Am J Physiol Endocrinol Metab 296:E1157–E1163

    Article  CAS  PubMed  Google Scholar 

  • Arrojo e Drigo R, Fonseca TL, Werneck-de-Castro JPS, Bianco AC (2013) Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta Gen Subj 1830:3956–3964

    Article  CAS  Google Scholar 

  • Azizi F, Mannix JE, Howard D, Nelson RA (1979) Effect of winter sleep on pituitary–thyroid-axis in american black bear. Am J Physiol 237:E227–E230

    CAS  PubMed  Google Scholar 

  • Best R (1982) Thermoregulation in resting and active polar bears. J Comp Physiol 146:63–73

    Article  Google Scholar 

  • Bianco AC (2013) Cracking the code for thyroid hormone signaling. Tran Am Clin Climatol Assoc 124:26–35

    Google Scholar 

  • Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Investig 116:2571–2579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    Article  CAS  PubMed  Google Scholar 

  • Boelen A, Wiersinga WM, Fliers E (2008) Fasting-induced changes in the hypothalamus–pituitary–thyroid axis. Thyroid 18:123–129

    Article  CAS  PubMed  Google Scholar 

  • Boily P (1996) Metabolic and hormonal changes during the molt of captive gray seals (Halichoerus grypus). Am J Physiol 270:R1051–R1058

    CAS  PubMed  Google Scholar 

  • Braathen M, Derocher A, Wiig O, Sormo E, Lie E, Skaare J, Jenssen B (2004) Relationships between PCBs and thyroid hormones and retinol in female and male polar bears. Environ Health Perspect 112:826–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bytingsvik J (2012) Organohalogenated contaminants (OHCs) in polar bear mother-cub pairs from Svalbard, Norway. Dissertation, Norwegian University of Science and Technology

  • Carter WJ, Shakir KM, Hodges S, Faas FH, Wynn JO (1975) Effect of thyroid hormone on metabolic adaptation to fasting. Metabolism 24:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Castillo V (2011) Canine hypothyroidism. Veterinary Focus 21:2–8

    Google Scholar 

  • Cattet MRL (2000) Biochemical and physiological aspects of obesity, high fat diet, and prolonged fasting in free-ranging polar bears. Dissertation, University of Saskatchewan

  • Cattet MRL, Caulkett NA, Obbard ME, Stenhouse GB (2002) A body-condition index for ursids. Can J Zool 80:1156–1161

    Article  Google Scholar 

  • Cheng S-Y, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox MD, Dalal SS, Heard CRC, Millward DJ (1984) Metabolic rate and thyroid status in rats fed diets of different protein-energy value: the importance of free T3. J Nutr 114:1609–1616

    CAS  PubMed  Google Scholar 

  • Crocker DE, Ortiz RM, Houser DS, Webb PM, Costa DP (2012) Hormone and metabolite changes associated with extended breeding fasts in male northern elephant seals (Mirounga angustirostris). Comp Biochem Physiol A 161:388–394

    Article  CAS  Google Scholar 

  • Dentice M, Marsili A, Zavacki A, Larsen PR (2013) The deiodinases and the control of intracellular thyroid hormone signaling during cellular differentiation. Biochim Biophys Acta Gen Subj 1830:3937–3945

    Article  CAS  Google Scholar 

  • Derocher AE, Wiig Ø (2002) Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J Zool 256:343–349

    Article  Google Scholar 

  • Derocher AE, Nelson RA, Stirling I, Ramsay MA (1990) Effects of fasting and feeding on serum urea and serum creatinine levels in polar bears. Mar Mamm Sci 6:196–203

    Article  Google Scholar 

  • Dietz R, Heide-Jørgensen MP, Härkönen T, Teilmann J, Valentin N (1991) Age determination of european harbour seal, Phoca vitulina L. Sarsia 76:17–21

    Google Scholar 

  • Donda A, Lemarchand-Beraud T (1989) Aging alters the activity of 5′-deiodinase in the adenohypophysis, thyroid gland, and liver of the male rat. Endocrinology 124:1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Ebling FJP, Barrett P (2008) The regulation of seasonal changes in food intake and body weight. J Neuroendocrinol 20:827–833

    Article  CAS  PubMed  Google Scholar 

  • Fuglei E, Aanestad M, Berg JP (2000) Hormones and metabolites of arctic foxes (Alopex lagopus) in response to season, starvation and re-feeding. Comp Biochem Physiol A 126:287–294

    Article  CAS  Google Scholar 

  • Gabrielsen KM, Villanger GD, Lie E, Karimi M, Lydersen C, Kovacs KM, Jenssen BM (2011) Levels and patterns of hydroxylated polychlorinated biphenyls (OH-PCBs) and their associations with thyroid hormones in hooded seal (Cystophora cristata) mother–pup pairs. Aquat Toxicol 105:482–491

    Article  CAS  PubMed  Google Scholar 

  • Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29:898–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heemstra KA, Soeters MR, Fliers E, Serlie MJ, Burggraaf J, van Doorn MB, van Der Klaauw AA, Romijn JA, Smit JW, Corssmit EP, Visser TJ (2009) Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting. J Clin Endocrinol Metab 94:2144–2150

    Article  CAS  PubMed  Google Scholar 

  • Hennemann G, Docter R, Friesema ECH, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22:451–476

    Article  CAS  PubMed  Google Scholar 

  • Hensel RJ, Sorensen FE (1980) Age determination of live polar bears. Int Conf Bear Res Manag 4:93–100

    Google Scholar 

  • Hissa R, Siekkinen J, Hohtola E, Saarela S, Hakala A, Pudas J (1994) Seasonal patterns in the physiology of the european brown bear (Ursus arctos arctos) in Finland. Comp Biochem Physiol A 109:781–791

    Article  CAS  Google Scholar 

  • Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev 75:519–631

    Article  CAS  PubMed  Google Scholar 

  • Jenssen BM, Villanger GD, Gabrielsen KM, Bytingsvik J, Bechshoft T, Ciesielski TM, Sonne C, Dietz R (2015) Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Front Ecol Evol 3:16

    Article  Google Scholar 

  • Kelso EJ, Champagne CD, Tift MS, Houser DS, Crocker DE (2012) Sex differences in fuel use and metabolism during development in fasting juvenile northern elephant seals. J Exp Biol 215:2637–2645

    Article  CAS  PubMed  Google Scholar 

  • Köhrle J (1999) Local activation and inactivation of thyroid hormones: the deiodinase family. Mol Cell Endocrinol 151:103–119

    Article  PubMed  Google Scholar 

  • Köhrle J (2000) The deiodinase family: selenoenzymes regulating thyroid hormone availability and action. Cell Mol Life Sci 57:1853–1863

    Article  PubMed  Google Scholar 

  • Kunisue T, Fisher JW, Kannan K (2011) Determination of six thyroid hormones in the brain and thyroid gland using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal Chem 83:417–424

    Article  CAS  PubMed  Google Scholar 

  • Larsen PR (2009) Type 2 iodothyronine deiodinase in human skeletal muscle: new insights into its physiological role and regulation. J Clin Endocrinol Metab 94:1893–1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavado-Autric R, Calvo RM, de Mena RM, Morreale de Escobar G, Obregon MJ (2013) Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology 154:529–536

    Article  CAS  PubMed  Google Scholar 

  • Leatherland JF, Ronald K (1981) Plasma concentrations of thyroid hormones in a captive and feral polar bear (Ursus maritimus. Comp Biochem Physiol A 70:575–577

    Article  Google Scholar 

  • Lee D, Martinez B, Crocker D, Ortiz R (2014) Thyroid hormone changes associated with prolonged food deprivation in adult male northern elephant seals. FASEB J 28:1101.6

  • Letcher R, Bustnes J, Dietz R, Jenssen B, Jorgensen E, Sonne C, Verreault J, Vijayan M, Gabrielsen G (2010) Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ 408:2995–3043

    Article  CAS  PubMed  Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265

    CAS  PubMed  Google Scholar 

  • Lydersen C, Wolkers H, Severinsen T, Kleivane L, Nordoy E, Skaare J (2002) Blood is a poor substrate for monitoring pollution burdens in phocid seals. Sci Total Environ 292:193–203

    Article  CAS  PubMed  Google Scholar 

  • Maia AL, Kim BW, Huang SA, Harney JW, Larsen PR (2005) Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Investig 115:2524–2533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maia AL, Goemann IM, Meyer ELS, Wajner SM (2011) Type 1 iodothyronine deiodinase in human physiology and disease: deiodinases: the balance of thyroid hormone. J Endocrinol 209:283

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Hodgson H (2002) The relationship between the thyroid gland and the liver. QJM 95:559–569

    Article  CAS  PubMed  Google Scholar 

  • Martinez B, Soñanez-Organis JG, Vázquez-Medina JP, Viscarra JA, MacKenzie DS, Crocker DE, Ortiz RM (2013) Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal. J Exp Biol 216:4647–4654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAninch EA, Bianco AC (2014) Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci 1311:77–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCann UD, Shav EA, Kaplan MM (1984) Iodothyronine deiodination reaction types in several rat tissues: effects of age, thyroid status, and glucocorticoid treatment. Endocrinology 114:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • McKinney MA, Peacock E, Letcher RJ (2009) Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ Sci Technol 43:4334–4339

    Article  CAS  PubMed  Google Scholar 

  • McKinney MA, Letcher RJ, Aars J, Born EW, Branigan M, Dietz R, Evans TJ, Gabrielsen GW, Peacock E, Sonne C (2011) Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005–2008. Environ Int 37:365–374

    Article  CAS  PubMed  Google Scholar 

  • McNabb FMA (1992) Thyroid hormones. Prentice Hall, New Jersey

    Google Scholar 

  • Mendel CM, Cavalieri RR, Weisiger RA (1988) Uptake of thyroxine by the perfused rat-liver—implications for the free hormone hypothesis. Am J Physiol 255:E110–E119

    CAS  PubMed  Google Scholar 

  • Morreale de Escobar G, Pastor R, Obregon MJ, Rey FED (1985) Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology 117:1890–1900

    Article  CAS  PubMed  Google Scholar 

  • Mourouzis I, Politi E, Pantos C (2013) Thyroid hormone and tissue repair: new tricks for an old hormone? J Thyroid Res 2013:5

    Article  Google Scholar 

  • Nieminen P, Pyykönen T, Asikainen J, Mononen J, Mustonen A-M (2004) Effects of fasting and exogenous melatonin on annual rhythms in the blue fox (Alopex lagopus). Comp Biochem Physiol A 139:183–197

    Article  Google Scholar 

  • Øritsland NA (1970) Temperature regulation of the polar bear (Thalarctos maritimus). Comp Biochem Physiol 37:225–233

    Article  Google Scholar 

  • Orozco A, Valverde-R C, Olvera A, García-G C (2012) Iodothyronine deiodinases: a functional and evolutionary perspective. J Endocrinol 215:207–219

    Article  CAS  PubMed  Google Scholar 

  • Polischuk SC, Norstrom RJ, Ramsay MA (2002) Body burdens and tissue concentrations of organochlorines in polar bears (Ursus maritimus) vary during seasonal fasts. Environ Pollut 118:29–39

    Article  CAS  Google Scholar 

  • Raasmaja A, Viluksela M, Rozman KK (1996) Decreased liver type I 5′-deiodinase and increased brown adipose tissue type II 5′-deiodinase activity in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated long-evans rats. Toxicology 114:199–205

    Article  CAS  PubMed  Google Scholar 

  • Robbins CT, Schwartz CC, Felicetti LA (2004) Nutritional ecology of ursids: a review of newer methods and management implications. Ursus 15:161–171

    Article  Google Scholar 

  • Robbins CT, Lopez-Alfaro C, Rode KD, Toien O, Nelson OL (2012) Hibernation and seasonal fasting in bears: the energetic costs and consequences for polar bears. J Mammal 93:1493–1503

    Article  Google Scholar 

  • Rosing-Asvid A, Born E, Kingsley M (2002) Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biol 25:878–883

    Google Scholar 

  • Santisteban P, Bernal J (2005) Thyroid development and effect on the nervous system. Rev Endocr Metab Disord 6:217–228

    Article  PubMed  Google Scholar 

  • Schoenmakers CHH, Pigmans IGAJ, Visser TJ (1992) Species differences in liver type I iodothyronine deiodinase. Biochim Biophys Acta Protein Struct Mol Enzymol 1121:160–166

    Article  CAS  Google Scholar 

  • Scholander P, Hock R, Walters V, Irving L (1950a) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull 99:259–271

    Article  CAS  PubMed  Google Scholar 

  • Scholander P, Hock R, Walters V, Johnson F, Irving L (1950b) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:237–258

    Article  CAS  PubMed  Google Scholar 

  • Silva J (2006) Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86:435–464

    Article  CAS  PubMed  Google Scholar 

  • Skaare JU, Bernhoft A, Wiig O, Norum KR, Haug E, Eide DM, Derocher AE (2001) Relationships between plasma levels of organochlorines, retinol and thyroid hormones from polar bears (Ursus maritimus) at Svalbard. J Toxicol Environ Health Part A 62:227–241

    Article  CAS  PubMed  Google Scholar 

  • Sonne C (2010) Health effects from long-range transported contaminants in arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36:461–491

    Article  CAS  PubMed  Google Scholar 

  • St. Aubin DS (2001) Chapter 10. Endocrinology. In: La D, Gulland F (eds) CRC handbook of marine mammal medicine: health, disease, and rehabilitation, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • St. Germain D, Galton V, Hernandez A (2008) Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 150:1097–1107

    Article  Google Scholar 

  • Stirling I (2002) Polar bear Ursus maritimus. In: Perrin WF, Bernd W, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, San Diego

    Google Scholar 

  • Stirling I, Derocher AE (1993) Possible impacts of climatic warming on polar bears. Arctic 46:240–245

    Article  Google Scholar 

  • Stirling I, Derocher AE (2012) Effects of climate warming on polar bears: a review of the evidence. Glob Change Biol 18:2694–2706

    Article  Google Scholar 

  • Stirling I, Lunn NJ, Iacozza J (1999) Long-term trends in the population ecology of polar bears in western hudson bay in relation to climatic change. Arctic 52:294–306

    Article  Google Scholar 

  • Tomasi TE, Hellgren EC, Tucker TJ (1998) Thyroid hormone concentrations in black bears (Ursus americanus): hibernation and pregnancy effects. Gen Comp Endocrinol 109:192–199

    Article  CAS  PubMed  Google Scholar 

  • van Doorn J, Roelfsema F, Heide DVD (1985) Concentrations of thyroxine and 3,5,3′-triiodothyronine at 34 different sites in euthyroid rats as determined by an isotopic equilibrium technique. Endocrinology 117:1201–1208

    Article  PubMed  Google Scholar 

  • Villanger GD, Jenssen BM, Fjeldberg RR, Letcher RJ, Muir DCG, Kirkegaard M, Sonne C, Dietz R (2011a) Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus). Environ Int 37:694–708

    Article  CAS  PubMed  Google Scholar 

  • Villanger GD, Lydersen C, Kovacs KM, Lie E, Skaare JU, Jenssen BM (2011b) Disruptive effects of persistent organohalogen contaminants on thyroid function in white whales (Delphinapterus leucas) from Svalbard. Sci Total Environ 409:2511–2524. doi:10.1016/j.scitotenv.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  • Viluksela M, Raasmaja A, Lebofsky M, Stahl BU, Rozman KK (2004) Tissue-specific effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activity of 5′-deiodinases I and II in rats. Toxicol Lett 147:133–142

    Article  CAS  PubMed  Google Scholar 

  • Weeke J, Orskov H (1973) Synthesis of l25I monolabeled 3,5,3′-triiodo-thyronine and thyroxine of maximum specific activity for radioimmunoassay. Scand J Clin Lab Investig 32:357

    Article  CAS  Google Scholar 

  • Welch AJ, Bedoya-Reina OC, Carretero-Paulet L, Miller W, Rode KD, Lindqvist C (2014) Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment. Gen Biol Evol 6:433–450

    Article  CAS  Google Scholar 

  • Zoeller RT, Tan S, Tyl R (2007) General background on the hypothalamic–pituitary–thyroid (HTP) axis. Crit Rev Toxicol 37:11–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The field work for this study was funded by the Danish Co-operation for Environment in the Arctic (DANCEA). The analyses of thyroid hormones and deiodinase activities in tissues were supported by research Grants SAF2012-32491 from MINECO and S2010/BMD-2423 from CAM, Spain. The authors thank all those who contributed to the field work in the Scoresby Sound area in East Greenland, including the local hunters who provided the polar bears for this study through their aboriginal hunting quotas. The authors would also like to thank Sigga Joensen and Rune Dietz at Aarhus University for performing the ageing of the polar bears and Grethe Stavik Eggen at NTNU for help with the thyroid hormone analysis in plasma. The study was funded by the Norwegian University of Science and Technology (NTNU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristin Møller Gabrielsen or Bjørn Munro Jenssen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielsen, K.M., Krokstad, J.S., Obregon, MJ. et al. Thyroid hormones and deiodinase activities in plasma and tissues from East Greenland polar bears (Ursus maritimus) during winter season. Polar Biol 38, 1285–1296 (2015). https://doi.org/10.1007/s00300-015-1694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1694-z

Keywords

Navigation