Skip to main content

Advertisement

Log in

Thyroid Development and Effect on the Nervous System

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Santisteban P. Development and anatomy of the hypothalamic-pituitary-thyroid axis. In Braverman LE, Utiger RD eds., Werner & Ingbar’s The Thyroid: A fundamental and clinical text, 9th edition. Philadelphia: Lippincott Williams and Wilkins, 2004:8–25.

    Google Scholar 

  2. Manley NR, Capecchi MR. The role of Hoxa-3 in mouse thymus and thyroid development. Development 1995;121:1989–2003.

    PubMed  Google Scholar 

  3. Manley NR, Capecchi MR. Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 1998;195:1–15.

    Article  PubMed  Google Scholar 

  4. Lazzaro D, Price M, de Felice M, Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 1991;113:1093–1104.

    PubMed  Google Scholar 

  5. De Felice M, Postiglione MP, Di Lauro R. Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: Insights from mouse models and human diseases. Endocrinology 2004;145:4062–4067.

    Article  PubMed  Google Scholar 

  6. Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, Marians RC, Davies TF, Zannini MS, De Felice M, Di Lauro R. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci USA 2002;99:15462–15467.

    Article  PubMed  Google Scholar 

  7. Medina DL, Santisteban P. Thyrotropin-dependent proliferation of in vitro rat thyroid cell systems. Eur J Endocrinol 2000;143:161–178.

    Article  PubMed  Google Scholar 

  8. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 2001;22:631–656.

    Article  PubMed  Google Scholar 

  9. De Felice M, Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 2004;25:722–746.

    Article  PubMed  Google Scholar 

  10. Damante G, Tell G, Di Lauro R. A unique combination of transcription factors controls differentiation of thyroid cells. Prog Nucleic Acid Res Mol Biol 2001;66:307–356.

    PubMed  Google Scholar 

  11. Suzuki K, Kobayashi Y, Katoh R, Kohn LD, Kawaoi A. Identification of thyroid transcription factor-1 in C cells and parathyroid cells. Endocrinology 1998;139:3014–3017.

    Article  PubMed  Google Scholar 

  12. Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 1998;19:87–90.

    PubMed  Google Scholar 

  13. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996;10:60–69.

    PubMed  Google Scholar 

  14. Kimura S, Ward JM, Minoo P. Thyroid-specific enhancer-binding protein/thyroid transcription factor 1 is not required for the initial specification of the thyroid and lung primordia. Biochimie 1999;81:321–327.

    Article  PubMed  Google Scholar 

  15. Sussel L, Marin O, Kimura S, Rubenstein JL. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 1999;126:3359–3370.

    PubMed  Google Scholar 

  16. Minoo P, Su G, Drum H, Bringas P, Kimura S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol 1999;209:60–71.

    Article  PubMed  Google Scholar 

  17. Pabst O, Forster R, Lipp M, Engel H, Arnold HH. NKX2.3 is required for MAdCAM-1 expression and homing of lymphocytes in spleen and mucosa-associated lymphoid tissue. EmboJ 2000;19:2015–2023.

    Article  Google Scholar 

  18. Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P. Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 1990;110:643–651.

    PubMed  Google Scholar 

  19. Parlato R, Rosica A, Rodriguez-Mallon A, Affuso A, Postiglione MP, Arra C, Mansouri A, Kimura S, Di Lauro R, De Felice M. An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol 2004;276:464–475.

    Article  PubMed  Google Scholar 

  20. Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci USA 2000;97:13144–13149.

    Article  PubMed  Google Scholar 

  21. Wendl T, Lun K, Mione M, Favor J, Brand M, Wilson SW, Rohr KB. Pax2.1 is required for the development of thyroid follicles in zebrafish. Development 2002;129:3751–3760.

    PubMed  Google Scholar 

  22. Santisteban P, Acebron A, Polycarpou-Schwarz M, Di Lauro R. Insulin and insulin-like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter. Mol Endocrinol 1992;6:1310–1317.

    Article  PubMed  Google Scholar 

  23. Aza-Blanc P, Di Lauro R, Santisteban P. Identification of a cis-regulatory element and a thyroid-specific nuclear factor mediating the hormonal regulation of rat thyroid peroxidase promoter activity. Mol Endocrinol 1993;7:1297–1306.

    Article  PubMed  Google Scholar 

  24. Ortiz L, Zannini M, Di Lauro R, Santisteban P. Transcriptional control of the forkhead thyroid transcription factor TTF-2 by thyrotropin, insulin, and insulin-like growth factor I. J Biol Chem 1997;272:23334–23339.

    Article  PubMed  Google Scholar 

  25. Dathan N, Parlato R, Rosica A, De Felice M, Di Lauro R. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn 2002;224:450–456.

    Article  PubMed  Google Scholar 

  26. De Felice M, Ovitt C, Biffali E, Rodriguez-Mallon A, Arra C, Anastassiadis K, Macchia PE, Mattei MG, Mariano A, Scholer H, Macchia V, Di Lauro R. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet 1998;19:395–398.

    Article  PubMed  Google Scholar 

  27. Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 2000;127:2433–2445.

    PubMed  Google Scholar 

  28. Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X. Eyal is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 2002;129:3033–3344.

    PubMed  Google Scholar 

  29. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003;5:877–889.

    Article  PubMed  Google Scholar 

  30. Partanen AM. Epidermal growth factor and transforming growth factor-alpha in the development of epithelial-mesenchymal organs of the mouse. Curr Top Dev Biol 1990;24:31–55.

    PubMed  Google Scholar 

  31. Bondy CA, Werner H, Roberts CT, Jr, LeRoith D. Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol 1990;4:1386–1398.

    PubMed  Google Scholar 

  32. Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 2002;3:499–512.

    Article  PubMed  Google Scholar 

  33. Fagman H, Grände M, Nilsson M. Thyroid hemiagenesis and ectopia in sonic hedgehog knockout mice. 29th Annual Meeting of the European Thyroid Association, Edimburgh, Scottland (U.K), 2003:24.

  34. Macchia PE. Recent advances in understanding the molecular basis of primary congenital hypothyroidism. Mol Med Today 2000;6:36–42.

    Article  PubMed  Google Scholar 

  35. Van Vliet G. Development of the thyroid gland: lessons from congenitally hypothyroid mice and men. Clin Genet 2003;63:445–455.

    Article  PubMed  Google Scholar 

  36. de Sanctis L, Corrias A, Romagnolo D, Di Palma T, Biava A, Borgarello G, Gianino P, Silvestro L, Zannini M, Dianzani I. Familial PAX8 small deletion (c.989_992delACCC) a ssociated with extreme phenotype variability. J Clin Endocrinol Metab 2004;89:5669–5674.

    Article  PubMed  Google Scholar 

  37. Bernal J. Action of thyroid hormone in brain. J Endocrinol Invest 2002;25:268–288.

    PubMed  Google Scholar 

  38. Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Is neuropsychological development related to maternal hypothyroidism, or to maternal hypothyroxinemia? J Clin Endocrinol Metabol 2000;85:3975–3987.

    Article  Google Scholar 

  39. Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological developmental. Currents perspectives. Endocr Rev 1993;14:94–106.

    Article  PubMed  Google Scholar 

  40. Legrand J. Effects of thyroid hormones on Central Nervous System. In Yanai J ed Neurobehavioral Teratology. Elsevier Science Publishers, Amsterdam, 1984:331–363.

  41. Ausó E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 2004;145:4037–4047.

    Article  PubMed  Google Scholar 

  42. Bates JM, St.Germain DL, Galton VA. Expression profiles of the three iodothyronine deiodinases Dl, D2 and D3, in the developing rat. Endocrinology 1999;140:844–851.

    Article  PubMed  Google Scholar 

  43. Guadaño-Ferraz A, Obregón MJ, St-Germain D, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci USA 1997;94:10391–10396.

    Article  PubMed  Google Scholar 

  44. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, Sugiyama Y. Functional characterization of rat brain-specific organic anion transporter (Oatpl4) at the blood-brain barrier: High affinity transporter for thyroxine. J Biol Chem 2003;278:43489–43495.

    Article  PubMed  Google Scholar 

  45. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003;278:40128–40135.

    Article  PubMed  Google Scholar 

  46. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 2004;74:168–175.

    Article  PubMed  Google Scholar 

  47. Harvey CB, Williams GR. Mechanism of thyroid hormone action. Thyroid 2002;12:441–446.

    Article  PubMed  Google Scholar 

  48. Bernal J, Pekonen F. Ontogenesis of the nuclear 3,5,3′-triiodothyronine receptor in the human fetal brain. Endocrinology 1984;114:677–679.

    PubMed  Google Scholar 

  49. Mellström B, Naranjo JR, Santos A, Gonzalez AM, Bernal J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol Endocrinol 1991;5:1339–1350.

    PubMed  Google Scholar 

  50. Bradley DJ, Towle HC, Young WS. 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. JNeurosci 1992;12:2288–2302.

    Google Scholar 

  51. Forrest D, Golarai G, Connor J, Curran T. Genetic analysis of thyroid hormone receptors in development and disease. Recent Prog Horm Res 1996;51:1–22.

    PubMed  Google Scholar 

  52. Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 2002;99:3985–3989.

    Google Scholar 

  53. Anderson GW, Schoonover CM, Jones SA. Control of thyroid hormone action in the developing rat brain. Thyroid 2003;13:1039–1056.

    Article  PubMed  Google Scholar 

  54. Martinez de Arrieta C, Morte B, Coloma A, Bernal J. The human RC3 gene homolog, NRGN contains a thyroid hormone-responsive element located in the first intron. Endocrinology 1999;140:335–343.

    Article  PubMed  Google Scholar 

  55. Billon N, Jolicoeur C, Tokumoto Y, Vennstrom B, Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalphal). Embo J 2002;21:6452–6460.

    Article  PubMed  Google Scholar 

  56. Alvarez-Dolado M, Ruiz M, del Rio JA, Alcantara S, Burgaya F, Sheldon M, Nakajima K, Bernal J, Howell BW, Curran T, Soriano E, Muñoz A. Thyroid hormone regulates reelin and dab 1 expression during brain development. J. Neurosci 1999;19:6979–6973.

    PubMed  Google Scholar 

  57. Garcia-Ferńandez LF, Urade Y, Hayaishi O, Bernal J, Muñoz A. Identification of a thyroid hormone response element in the promoter region of the rat lipocalin-type prostaglandin D synthase (beta-trace) gene. Mol Brain Res 1998;55:321–330.

    Article  PubMed  Google Scholar 

  58. Alvarez-Dolado M, Gonzalez-Sancho JM, Bernal J, Muñoz A. Developmental expression of tenascin-C is altered by hypothyroidism in the rat brain. Neurosci 1998;84:309–322.

    Article  Google Scholar 

  59. Alvarez-Dolado M, Cuadrado A, Navarro-Yubero C, Sonderegger P, Furley AJ, Bernal J, Muñoz A. Regulation of the LI cell adhesion molecule by thyroid hormone in the developing brain. Mol Cell Neurobiol 2000;499–514.

  60. Perez-Juste G, Aranda A. The cyclin-dependent kinase inhibitor p27(Kipl) is involved in thyroid hormone-mediated neuronal differentiation. J Biol Chem 1999;274:5026–5031.

    Article  PubMed  Google Scholar 

  61. Ruiz-Marcos A, Cartagena P, Garcia A, Escobar del Rey F, Morreale de Escobar G. Rapid effects of adult-onset hypothyroidism on dendritic spines of pyramidal cells of the rat cerebral cortex. Exp. Brain Res 1988;73:583–588.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santisteban, P., Bernal, J. Thyroid Development and Effect on the Nervous System. Rev Endocr Metab Disord 6, 217–228 (2005). https://doi.org/10.1007/s11154-005-3053-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-005-3053-9

Keywords

Navigation