Skip to main content

Advertisement

Log in

Penicillium solitum: a mesophilic, psychrotolerant fungus present in marine sediments from Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Few studies have addressed the diversity of cultivable fungi from marine sediments, especially those from Antarctica. In the present study, we evaluated the presence and distribution of cultivable fungi in marine core sediments obtained from 100, 500, 700 and 1,100 m below the Antarctic Ocean surface. Fifty-two fungal isolates were identified as Penicillium solitum by their physiological and morphological characteristics, and the identity of 12 representative isolates was further confirmed by sequencing of the ITS1-5.8S-ITS2 and β-tubulin genes. P. solitum displayed high sequence similarity to Penicillium taxa that have been described from other marine habitats. Conidial germination of P. solitum occurred at low temperatures and high salinities. In addition, P. solitum displayed extracellular amylasic and esterasic activities. The isolation of P. solitum from marine sediments in Antarctica and its survival at low temperatures and high salt concentrations suggest that it is adapted to the cold and halophilic environment of the Antarctic oceans. Because P. solitum produces extracellular enzymes, it is an interesting eukaryotic model for the study of structure–function relationships during enzymatic biocatalysis and biotransformation under extreme conditions. Marine sediments from Antarctica may represent a unique source for obtaining extremophilic fungi. New studies using different culture media, temperatures ranges and pressure conditions as well as metagenomic techniques can assist in understanding the extremophilic fungal communities in marine sediments across the Antarctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterase in cold adapted environments. Gene 410:234–240

    Article  PubMed  CAS  Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bass D, Howie A, Brown N, Barton N, Demidoba M et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  PubMed  CAS  Google Scholar 

  • Bertoldo C, Antranikan G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6:151–160

    Article  PubMed  CAS  Google Scholar 

  • Bhadury P, Bik H, Lambshead JD, Austen MC, Smerdon GR, Rogers AD (2011) Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments. PLoS One 6:e264451–e264457

    Article  Google Scholar 

  • Biddle JF, House CH, Brenchley JE (2005) Microbial stratification in deeply buried marine sediment reflects change in sulfate/methane profiles. Geobiology 3:287–295

    Article  CAS  Google Scholar 

  • Bradner JR, Sidhu RK, Yee B, Skotnicki ML, Selkirk PM, Nevalainen KMH (2000) A new microfungal isolate, Embellisia sp., associated with the Antarctic moss Bryum argenteum. Polar Biol 23:730–732

    Article  Google Scholar 

  • Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Calvez TL, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res 53:14–27

    Article  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Br Antarct Surv Bull 68:37–45

    Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431

    Article  Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed  CAS  Google Scholar 

  • Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenita A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118

    Article  Google Scholar 

  • Hyde KD, Jones EBG, Leaño E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Jones EBG (2011) Fifty years of marine mycology. Fungal Div 50:73–112

    Article  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2011) Ainsworth and Bisby’s Dictionary of the Fungi, 19th edn. CAB International, Wallingford

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology, the higher fungi, Academic Press

  • Kristjansson JK, Hreggvidsson GO (1995) Ecology and habitats of extremophiles. World J Microbiol Biotechnol 11:17–25

    Article  Google Scholar 

  • Kuddus M, Arif JM, Ramteke PW (2011) An overview of cold-active microbial α–amylase: adaptation strategies and biotechnological potentials. Biotechnology 3:246–258

    Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  CAS  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Lund F (1995) Diagnostic characterization of Penicillium palitans, P. commune and P. solitum. Lett Appl Microbiol 20:228–231

    Article  CAS  Google Scholar 

  • Moller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycology 88:922–933

    Article  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments - the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Orsi W, Biddle JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces. PLoS ONE 2:e56335

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microbial Ecol 15:153–163

    Article  Google Scholar 

  • Raghukumar C, Damare SR, Singh P (2010) A review on deep-sea fungi occurrence, diversity and adaptations. Bota Mar 53:479–492

    Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Seifert KA, Louis-Seize G (2000) Phylogeny and species concepts in the Penicillium aurantiogriseum complex as inferred from partial β-tubulin gene DNA sequences. In: Samson RA, Pitt JI (eds) Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers, Netherlands, pp 189–198

    Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Div 40:89–102

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the central indian basin by culture-independent. Approach Microbiol Ecol 61:507–517

    Article  CAS  Google Scholar 

  • Skouboe P, Taylor JW, Frisvad JC, Lauritsen D, Larsen L, Albaek C, Boysen M, Rossen L (2000) Molecular methods for differentiation of closely related Penicillium species. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Netherlands, pp 179–188

    Google Scholar 

  • Snelgrove PVR, Blackburn TH, Hutchings P, Alongi D, Grassle JF, Hummel H, King G, Koike I, Lambshead PJD, Ramsing NB, Solis-Weiss V, Freckman DW (1997) The importance of marine sediment biodiversity in ecosystem processes. Ambio 26:578–582

    Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microbiol Ecol 52:207–216

    Article  Google Scholar 

  • Sùrensen D, Larsen TO, Christophersen C, Nielsen PH, Anthoni U (1999) Solistatin, an aromatic compactin analogue from Penicillium solitum. Phytochemistry 51:1027–1029

    Article  Google Scholar 

  • Takami H (1999) Isolation and characterization of microorganisms from deep-sea mud. In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 3–26

    Chapter  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Uspon R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–196

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Gelfand D, Sninsky J (eds) Innis NA. A guide to methods and applications. Academic Press San Diego, PCR protocols, pp 315–322

    Google Scholar 

Download references

Acknowledgments

This study had financial and logistic support from the Brazilian Antarctic Program, Marine of Brazil. This work is part of the API activity 403, contributes to Microbiological and Ecological Responses to Global Environmental Changes in Polar Regions, and INCT Criosfera. This work was financially supported by the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank the anonymous reviewers for their comments, which help the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, V.N., Campos, L.S., Melo, I.S. et al. Penicillium solitum: a mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36, 1823–1831 (2013). https://doi.org/10.1007/s00300-013-1403-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1403-8

Keywords

Navigation