Skip to main content
Log in

Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Cryoconite holes have biogeochemical, ecological and biotechnological importance. This communication presents results on culturable psychrophilic yeast and filamentous fungi from cryoconite holes at Midre Lovénbreen glacier. The identification of these microbes was achieved through conventional and DNA sequencing techniques. Effect of temperature, salt and media on growth of the cultures was studied. Measurements on the bioavailability of nutrients and trace metals were made through different methods including ICPMS (Inductively Coupled Plasma Mass Spectrometry). Colony forming unit (CFU) per gram of sediment sample was calculated to be about 7 × 103–1.4 × 104 and 4 × 103–1.2 × 104 of yeast and filamentous fungi, respectively. Based on morphology and sequence data, these were identified as Cryptococcus gilvescens, Mrakia sp., Rhodotorula sp., Phialophora alba and Articulospora tetracladia. Amongst these, Phialophora alba, Cryptococcus gilvescens and Mrakia sp. zhenx-1 are reported for the first time from Svalbard Arctic, while Rhodotorula sp. (95% gene similarity) is a new species, yet to be described. Rhodotorula sp. expressed high amylase, while Cryptococcus gilvescens showed high lipase activity. Mrakia sp. showed phosphate solubilization between 4 and 15°C, which is a first record. Chemical analysis revealed the presence of organic carbon, nitrogen and phosphorus in substantial amounts in the sediments. Filamentous fungi and yeast in the cryoconite holes drive the process of organic macromolecule degradation through cold-adapted enzyme secretion, thereby assisting in nutrient cycling in these subglacial environments. Further, these cold-adapted enzymes may provide an opportunity for the prospect of biotechnology in Arctic. This is the first report on mycological investigation into cryoconite holes from Midre Lovénbreen glacier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B (2007) Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J Geophys Res doi:10.1029/2006JG000350

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol 15:955–960

    Article  Google Scholar 

  • Barnett HL (1960) Illustrated genera of imperfect fungi, 2nd edn. Burgess Publishing Company, USA

    Google Scholar 

  • Barron GL (1977) The genera of hyphomycetes from soil. Robert E. Krieger Pub. Comp, INC. Huntington, New York

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie Leeuwenhoek 91:277–289

    Article  PubMed  Google Scholar 

  • Buzzini P, Martini A (2002) Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J Appl Microbiol 93:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Carmichael JW, BryceKendrick W, Conners IL, Sigler L (1980) Genera of hyphomycetes. The University of Alberta Press, Canada

    Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160

    Article  PubMed  Google Scholar 

  • Ellis MB (1971) Dematiaceous hyphomycetes. CMI, Kew, England

    Google Scholar 

  • Ellis MB (1976) More dematiaceous hyphomycetes. CMI, Kew, England

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Micr 50:1351–1371

    Google Scholar 

  • Fiedurek J, Gromada A, Saomka A, Korniaowicz-Kowalska T, Kurek E, Melke J (2003) Catalase activity in Arctic microfungi grown at different temperatures. Acta Biol Hung 54:105–112

    Article  PubMed  CAS  Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340

    Article  PubMed  CAS  Google Scholar 

  • Gostinĉar C, Urŝiĉ V, De Hoog S, Gunde-Cimerman N (2006) Local evolution of black yeast A. pullulans in sub glacial Arctic ice. In: Proceedings of international conference on alpine and polar microbiology, Innsbruck, Austria, p 19

  • Hagen JO, Kohler J, Melvold K, Winther JG (2003) Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Res 22:145–159

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hankin L, Anagnostakis SL (1975) The use of solid media for detraction of enzyme production by fungi. Mycologia 67:97–607

    Article  Google Scholar 

  • Hodson A, Anesio AM, Ng F, Watson R, Quirk J Irvine-Fynn T et al. (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res doi:10.1029/2007JG000452

  • Hodson AJ, Anesio AM, Tranter M, Fountain AG, Osborn M, Priscu J, Laybourn-parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407

    Article  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of the fungi, 10th edn. CABI Publishing, UK

    Google Scholar 

  • Libkind D, Brizzio S, Ruffini A, Gadanho M, Van Broock M, Paulo SJ (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Leeuwenhoek 84:313–322

    Article  PubMed  CAS  Google Scholar 

  • Mindl B, Anesio AM, Meirer K, Hodson AJ, Laybourn-Parry J, Sommaruga R, Sattler B (2007) Factors influencing bacterial dynamics along a transect from supralgacial runoff to proglacial lakes of a high Arctic glacier. FEMS Microbiol Ecol 59:307–317

    Article  PubMed  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fristen CH (2001) Glacial cryconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123:173–197

    Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-parry J (2002) The microbial communities and primary productivity of cryoconite holes in Arctic glacier (Svalbard 79N). Polar Biol 25:591–596

    Google Scholar 

  • Säwström C, Grane′li W, Laybourn-Parry J, Anesio AM (2007) High viral infection rates in Antarctic and Arctic bacterioplankton. Environ Microbiol 9:250–255

    Article  PubMed  Google Scholar 

  • Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationships to rock weathering and carbon cycling. Geology 27:107–110

    Article  CAS  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Skidmore ML, Anderson SP, Sharp MJ, Foght JM, Lanoil BD (2005) Comparison of microbial community composition of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microb 71:6986–6997

    Article  CAS  Google Scholar 

  • Skowronek M, Kuszewska J, Fiedurek J, Gromada A (2003) Invertase activity of psychrotrophic fungi. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia 58:1–9

    Google Scholar 

  • Stibal M, Anesio AM, Blues CJD, Tranter M (2009) Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6:913–922

    Article  CAS  Google Scholar 

  • Stonehouse B (1989) Polar ecology. Chapman and Hall, New York

    Google Scholar 

  • Subbiah BH, Asija GL (1956) A rapid procedure for determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Takeuchi N, Kohshima S, Seko K (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122

    Article  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA (1916) Do fungi live and produce mycelium in the soil? Science NS 44:320–322

    Article  CAS  Google Scholar 

  • Walkley A, Black CA (1934) An examination of Degtjareff methods for determining soil organic matter and a proposed modification of chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wharton RA, McKay CP, Simmons GM, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  Google Scholar 

  • Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. The Yeasts. In: Kurtzman CP, Fell JW (eds) A taxonomic study. Elsevier, Amsterdam, pp 77–100

    Google Scholar 

Download references

Acknowledgments

Author (PS1) is highly indebted to Department of Science & Technology (DST), New Delhi for financial support. Authors are thankful to Dr Rasik Ravindra, Director NCAOR, Director BITS and Dr Jagdev Sharma, NRCG for encouragement and facilities. Thanks are due to Dr C. T. Achuthankutty for improving the English language of the manuscript, Chief Editor and anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv M. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Singh, S.M. Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35, 575–583 (2012). https://doi.org/10.1007/s00300-011-1103-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1103-1

Keywords

Navigation