Skip to main content
Log in

Chironomid assemblages from seabird-affected High Arctic ponds

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Seabirds can shunt nutrients and contaminants from marine to terrestrial ecosystems by forming dense breeding colonies and releasing wastes to these sites. A large colony of seabirds at Cape Vera (Devon Island, High Arctic Canada) has resulted in eutrophic conditions and potentially toxic concentrations of sedimentary metals in several freshwater ponds that drain their nesting sites. Here, we investigated the effects of elevated nutrient and sedimentary metal concentrations on the distribution of subfossil chironomids in surface sediments from 21 ponds that span a gradient of seabird influence. Although many ponds registered high nutrient concentrations (e.g., mean TP = 45 μg l −1), eutrophic taxa typical of temperate waters were not common, with most assemblages being dominated by morphotypes of Psectrocladius and Tanytarsina, as well as Corynoneura arctica-type, and Metriocnemus hygropetricus-type. Although the ponds within and outside the area influenced by seabirds contained largely similar taxa, variations did exist in the relative abundances of the different species. Lakewater pH was the only measured environmental variable that explained statistically significant amounts of variation in the chironomid assemblages. Although direct effects of pH on chironomids cannot be ruled out, pH is likely tracking production-related changes driven by limnetic dissolved inorganic carbon dynamics. Sediment cores collected from seabird-affected and seabird-free ponds showed a greater number of chironomid taxa and higher head capsule abundances in the pond receiving seabird inputs. Chironomid assemblages in both cores recorded increased abundances in recent decades, likely in response to warmer conditions and lengthened growing seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Antoniades D, Hamilton PB, Douglas MSV, Smol JP (2008) The freshwater floras of Prince Patrick, Ellef Ringnes, and Northern Ellesmere Islands from the Canadian Arctic Archipelago. Iconographica Diatomologica 17:1–649

    Google Scholar 

  • Antoniades D, Michelutti N, Quinlan R, Blais JM, Bonilla S, Douglas MSV, Pienitz R, Smol JP, Vincent W (in press) Cultural eutrophication, anoxia, and ecosystem recovery in Meretta Lake, high Arctic Canada. Limnol Oceaonogr

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1: basin analysis, coring, and chronological techniques. Kluwer Acadamic Publishers, Dordrecht, The Netherlands, pp 172–203

    Google Scholar 

  • Axford Y et al (2009) Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc Nat Acad Sci. doi:10.1073/pnas.0907094106

  • Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K, Finney BP (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314

    Article  Google Scholar 

  • Bennike O, Brodersen KP, Jeppesen E, Walker IR (2004) Aquatic invertebrates and high latitude paleolimnology. In: Pientiz RP, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes, developments in Paleoenvironmental research, vol 8. Springer, Dordrecht, pp 159–186

    Chapter  Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolim 20:307–332

    Article  Google Scholar 

  • Blais JM, Kimpe LE, McMahon D, Keatley BE, Mallory ML, Douglas MSV, Smol JP (2005) Arctic seabirds transport marine-derived contaminants. Science 309:445

    Article  PubMed  CAS  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Brimble SK, Blais JM, Kimpe LE, Mallory ML, Keatley BE, Douglas MSV, Smol JP (2009a) Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Can J Fish Aquat Sci 66:949–958

    Article  CAS  Google Scholar 

  • Brimble SK et al (2009b) High Arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc. Environ Toxicol Chem 28:2426–2433

    Article  PubMed  CAS  Google Scholar 

  • Brodersen KP, Lindegaard C (1999) Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwat Biol 42:143–157

    Article  Google Scholar 

  • Brodersen KP, Quinlan R (2006) Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat Sci Rev 25:1995–2012

    Article  Google Scholar 

  • Brodin YW (1990) Midge fauna development in acidified lakes in Northern Europe. Philos Trans R Soc B 327:295–298

    Article  Google Scholar 

  • Brooks SJ, Bennion H, Birks HJB (2001) Tracing lake eutrophic history with a chironomid-total phosphorus inference model. Freshw Biol 46:513–533

    Article  CAS  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaeoarctic chironomidae larvae in palaeoecology. Quaternary Research Association, London

    Google Scholar 

  • Clerk S, Hall R, Quinlan R, Smol JP (2000) Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J Paleolimnol 23:319–336

    Article  Google Scholar 

  • Cranston PS (1982) A key to the larvae of the British Orthocladiinae (Chironomidae). Freshw Biol Assoc Sci 45:1–152

    Google Scholar 

  • Cranston PS, Oliver DR, Saether OA (1983) Keys and diagnoses of the larvae of the subfamily Orthocladiinae (Diptera, Chironomidae) of the Holarctic Region. Entomologica Scandinavica Supplement 19:149–291

    Google Scholar 

  • Douglas MSV, Smol JP (2000) Eutrophication and recovery in the High Arctic: Meretta Lake (Cornwallis Island, Nunavut, Canada) revisited. Hydrobiol 431:193–204

    Article  CAS  Google Scholar 

  • Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-18th century environmental change in high-arctic ecosystems. Science 266:416–419

    Article  PubMed  Google Scholar 

  • Eggermont H (1999) Impact of soil erosion in Burundi and western Tanzania on the larval chironomid fauna of river deltas in Lake Tanganyika, East Africa. [in Dutch: De invloed van bodemerosie in Burundi en westelijkTanzanie op de benthische biodiversiteit van LakeTanganyika, Oost-Afrika]. Licentiate in Zoology thesis, Ghent University, Ghent

  • Environment Canada (1997) Canadian sediment quality guidelines for cadmium: supporting document. Environmental Conservation Service, Ecosystem Science Directorate, Science Policy and Environmental Quality Branch, Guidelines and Standards Division, Ottawa

  • Gajewski K, Bouchard G, Wilson SE, Kurek J, Cwynar LC (2005) Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiol 549:131–143

    Article  Google Scholar 

  • Gaston AJ, Mallory ML, Gilchrist HG, O’Donovan K (2006) Status, trends and attendance patterns of the Northern Fulmar Fulmarus glacialis in Nunavut, Canada. Arctic 59:165–178

    Google Scholar 

  • Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: zoological indicator, vol 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 73–105

    Google Scholar 

  • Hirvenoja M, Hirvenoja E (1988) Corynoneura brundini spec. nov. Ein Beitrag zur Systematik der Gattung Corynoneura (Diptera, Chironomidae). Spix Suppl 14:213–238

    Google Scholar 

  • Hofmann W (1971) Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch Hydrobiol Beih 6:1–50

    Google Scholar 

  • Ilyashuk B, Ilyashuk E, Dauvalter V (2003) Chironomid responses to long-term metal contamination: a paleolimnological study in two bays of Lake Imandra, Kola Peninsula, northern Russia. J Paleolimnol 30:217–230

    Article  Google Scholar 

  • Kalff J, Welch HE (1974) Phytoplankton production in Char lake, a natural polar lake, and in Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. J Fish Res Bd Can 31:621–636

    Article  Google Scholar 

  • Keatley BE (2007) Limnological and paleolimnological investigations of environmental change in three distinct ecosystem types, Canadian High Arctic. Dissertation, Queen’s University at Kingston

  • Keatley BE, Douglas MSV, Blais JM, Mallory ML, Smol JP (2009) Impacts of seabird-derived nutrients on water quality and diatom assemblages from Cape Vera, Devon Island, Canadian High Arctic. Hydrobiol 621:191–205

    Article  CAS  Google Scholar 

  • Kurek J, Cwynar LC (2009a) The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels. J Paleolmnol 42:37–50

    Article  Google Scholar 

  • Kurek J, Cwynar LC (2009b) Effects of within-lake gradients on the distribution of fossil chironomids from maar lakes in western Alaska: implications for environmental reconstructions. Hydrobiol 623:37–52

    Article  Google Scholar 

  • Langdon PG, Ruiz Z, Brodersen KP, Foster IDL (2006) Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshw Biol 51:562–577

    Article  CAS  Google Scholar 

  • Langdon PG, Holmes N, Caseldine CJ (2008) Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change. J Paleolimnol 40:273–293

    Article  Google Scholar 

  • Larocque I, Rolland N (2006) A visual guide to sub-fossil chironomids from Quebec to Ellesmere Island. Rapport R-900. Institut National de la Recherche Scientifique, Quebec

    Google Scholar 

  • Lim DSS, Kwan C, Douglas MSV (2001a) Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: an examination of community relationships and habitat preferences. J Phycol 37:379–392

    Article  Google Scholar 

  • Lim DSS, Douglas MSV, Smol JP (2001b) Diatoms and their relationship to environmental variables from lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic. Hydrobiol 450:215–230

    Article  Google Scholar 

  • Maloney KO, Feminella JW (2006) Evaluation of single- and multi-metric benthic macroinvertebrate indicators of catchment disturbance over time at the Fort Benning Military Installation, Georgia, USA. Ecol Indic 6:469–484

    Article  Google Scholar 

  • Michelutti N, Holtham AJ, Douglas MSV, Smol JP (2003a) Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island, and comparisons to other diatom surveys in the Canadian Arctic. J Phycol 39:465–480

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003b) Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Glob Plan Change 38:257–271

    Article  Google Scholar 

  • Michelutti N, Smol JP, Douglas MSV (2006) Ecological characteristics of modern diatom assemblages from Axel Heiberg Island (High Arctic Canada) and their application to paleolimnological inference models. Can J Bot 84:1695–1713

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2007a) Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biol 30:1459–1473

    Article  Google Scholar 

  • Michelutti N, Hermanson MH, Smol JP, Dillon PJ, Douglas MSV (2007b) Delayed response of diatom assemblages to sewage inputs in an Arctic lake. Aquat Sci 69:523–533

    Article  CAS  Google Scholar 

  • Michelutti N, Blais JM, Liu H, Keatley BE, Douglas MSV, Mallory ML, Smol JP (2008) A test of the possible influence of seabird activity on the 210Pb flux in high Arctic ponds at Cape Vera, Devon Island, Nunavut: implications for radiochronology. J Paleolimnol 40:783–791

    Article  Google Scholar 

  • Michelutti N, Liu H, Smol JP, Kimpe LE, Keatley BE, Mallory M, Macdonald RW, Douglas MSV, Blais JM (2009a) Accelerated delivery of polychlorinated biphenyls (PCBs) in recent sediments near a large seabird colony in Arctic Canada. Environ Pollut 157:2769–2775

    Article  PubMed  CAS  Google Scholar 

  • Michelutti N, Keatley BE, Brimble S, Blais JM, Liu H, Douglas MSV, Mallory ML, Macdonald RW, Smol JP (2009b) Seabird-driven shifts in Arctic pond ecosystems. Proc R Soc B 276:591–596. doi:10.1098/rspb.2008.1103

    Article  PubMed  Google Scholar 

  • Michelutti N, Blais JM, Mallory M, Brash J, Thienpont J, Kimpe LE, Douglas MSV, Smol JP (2010) Trophic position influences the efficacy of seabirds as metal biovectors. Proc Nat Acad Sci. doi:10.1073/pnas.1001333107

  • Mousavi SK, Primicerio R, Amundsen P-A (2003) Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Sci Total Environ 307:93–110

    Article  PubMed  Google Scholar 

  • Porinchu D, Rolland N, Moser K (2009) Development of a chironomid-based air temperature inference model for the central Canadian Arctic. J Paleolimnol 41:349–368

    Article  Google Scholar 

  • Quinlan R, Smol J (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342

    Article  Google Scholar 

  • Quinlan R, Douglas MSV, Smol JP (2005) Food web changes in arctic ecosystems related to climate warming. Glob Change Biol 11:1381–1386

    Article  Google Scholar 

  • Rigler FH (1974) Char lake project PF-2, final report 1974. Canadian Committee for the International Biological Programme, Toronto, Canada

  • Rolland N, Larocque I, Francus P, Pienitz R, Laperrière L (2008) Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) lake. Holocene 18:229–241

    Article  Google Scholar 

  • Schindler DW, Welch HE, Kalff J, Brunskill GJ, Kritsch N (1974) Physical and chemical limnology of Char Lake (75° N lat.). J Fish Res Bd Can 31:585–607

    Article  CAS  Google Scholar 

  • Smol JP, Douglas MSV (2007a) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474. doi:10.1890/060162

    Article  Google Scholar 

  • Smol JP, Douglas MSV (2007b) Crossing the final ecological threshold in high Arctic ponds. Proc Nat Acad Sci 104:12395–12397. doi:10.1073/pnas.0702777104

    Article  PubMed  CAS  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-Á, Hughes M, Keatley B, Laing T, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulneir-Talbot É, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Nat Acad Sci 102:4397–4402

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Walker IR (1988) Late-Quaternary Paleoecology of Chironomidae (Diptera: Insecta) from Lake Sediments in British Columbia. Dissertation, Simon Fraser University, Burnaby, Canada

  • Walker IR (2001) Midges: chironomidae and related diptera. In: Smol JP, Birks JB, Last WM (eds) Tracking environmental change using lake sediments: zoological indicators. Kluwer Academic Publishers, Dordrecht, pp 43–66

    Google Scholar 

  • Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925

    Article  Google Scholar 

  • Walker IR, MacDonald GM (1995) Distributions of Chironomidae (Insecta, Diptera) and other fresh-water midges with respect to treeline, northwest-territories, Canada. Arct Alp Res 27:258–263

    Article  Google Scholar 

  • Welch HE (1974) Metabolic rates of arctic lakes. Limnol Oceanogr 19:65–73

    Article  Google Scholar 

  • Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part 1—larvae. Entomologica Scandinavica 19(Suppl):1–457

    Google Scholar 

  • Wolfe AP (2002) Climate modulates the acidity of arctic lakes on millennial time scales. Geology 30:215–218

    Article  Google Scholar 

  • Wolfe AP, Miller GH, Olsen CA, Forman SL, Doran PT, Holmgren SU (2004) Geochronology of high latitude lake sediments. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic Lakes. Springer, The Netherlands, pp 19–52

    Chapter  Google Scholar 

  • Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by Natural Science and Engineering Research Council (NSERC) awards to JPS, MSVD and JMB. We are grateful to the Indian and Northern Affairs Canada (NSTP), Natural Resources Canada (PCSP) and Environment Canada (CWS) for financial and logistical support pertaining to fieldwork. Chironomid identifications were greatly aided by Roberto Quinlan, Andrew Medeiros, Yarrow Axford, Elizabeth Thomas and Joshua Kurek. Konrad Gajewski generously provided chironomid data that we used for comparison with our dataset. Helpful comments on the manuscript were provided by Joshua Kurek and Bronwyn Keatley. This project is PCSP/EPCP no. 00910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Michelutti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelutti, N., Mallory, M.L., Blais, J.M. et al. Chironomid assemblages from seabird-affected High Arctic ponds. Polar Biol 34, 799–812 (2011). https://doi.org/10.1007/s00300-010-0934-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0934-5

Keywords

Navigation