Skip to main content
Log in

Survival and colonisation potential of photoautotrophic microorganisms within a glacierised catchment on Svalbard, High Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The survival and colonisation potential of photoautotrophic microbes (cyanobacteria and microalgae) were investigated in three terrestrial environments within a glacierised catchment on Svalbard: old vegetation-covered soil, recently deglaciated barren soil and subglacial sediments. One-year reciprocal transplant incubations of photoautotrophic microbial communities from the three soil/sediment environments were conducted in order to reveal the autochthonous or allochthonous origin of the present photoautotrophs. The abundance and taxonomic composition of photoautotrophic microbes and their changes over time and between soil/sediment types and physico-chemical characteristics of the soils/sediments were determined. The recovery time of a photoautotrophic community by import of cells was between several months in subglacial and vegetated soils and up to 27 years in proglacial soils. No active growth was recorded in subglacial sediments, whilst positive growth, and so the potential for autochthonous recovery, was found in proglacial and vegetated soils. The most suitable environment for the survival of transplanted microbes was provided in proglacial soil. We show here that the new proglacial substrata can be successfully colonised by photoautotrophic microbes, and that input of allochthonous cells may, in some cases, exceed in situ microbial growth. Whilst the subglacial environment is rather a conduit for photoautotrophic microbes than a place of growth and production, the supply of viable photoautotrophs in it is relatively high and may serve as a significant resource of nutrients for subglacial microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bardgett RD, Richter A, Bol R, Garnett MH, Bäumler R, Xu XL, Lopez-Capel E, Manning DAC, Hobbs PJ, Hartley IR, Wanek W (2007) Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol Lett 3:487–490. doi:10.1098/rsbl.2007.0242

    Article  PubMed  Google Scholar 

  • Belnap J, Lange OL (2001) Structure and function of biological soil crusts: synthesis. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 471–480

    Google Scholar 

  • Bhatia M, Sharp M, Foght J (2006) Distinct bacterial communities exist beneath a High Arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845. doi:10.1128/AEM.00595-06

    Article  CAS  PubMed  Google Scholar 

  • Breen K, Lévesque E (2008) The influence of biological soil crusts on soil characteristics along a High Arctic glacier foreland, Nunavut, Canada. Arct Antarct Alp Res 40:287–297. doi:10.1657/1523-0430(06-098)[BREEN]2.0.CO;2

    Article  Google Scholar 

  • Davey MC, Rothery P (1993) Primary colonization by microalgae in relation to spatial variation in edaphic factors on Antarctic fellfield soils. J Ecol 81:335–343

    Article  Google Scholar 

  • Duc L, Noll M, Meier BE, Bürgmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding Alpine glacier. Microb Ecol 57:179–190. doi:10.1007/s00248-008-9408-5

    Article  PubMed  Google Scholar 

  • Elster J (2002) Ecological classification of terrestrial algal communities in polar environments. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin, pp 303–326

    Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47:329–340. doi:10.1007/s00248-003-1036-5

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in north-west Svalbard. J Ecol 91:651–663

    Article  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain AG, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407. doi:10.1007/s00248-005-0246-4

    Article  PubMed  Google Scholar 

  • Kaštovská K, Stibal M, Šabacká M, Černá B, Šantrůčková H, Elster J (2007) Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by the epifluorescence microscopy and PLFA. Polar Biol 30:277–287. doi:10.1007/s00300-006-0181-y

    Article  Google Scholar 

  • Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra, Spitsbergen. Arct Alp Res 29:470–477

    Article  Google Scholar 

  • Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic algae and cyanobacteria. Ecography 20:585–594

    Article  Google Scholar 

  • Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74. doi:10.1007/s00300-003-0580-2

    Article  Google Scholar 

  • Nakatsubo T, Yoshitake S, Uchida M, Uchida M, Shibata Y, Koizumi H (2008) Organic carbon and microbial biomass in a raised beach deposit under terrestrial vegetation in the High Arctic, Ny-Ålesund, Svalbard. Polar Res 27:23–27. doi:10.1111/j.1751-8369.2008.00037.x

    Article  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122. doi:10.1007/s00248-006-9144-7

    Article  PubMed  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial communities changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157. doi:10.1111/j.1574-6941.2009.00706.x

    Article  CAS  PubMed  Google Scholar 

  • Řehák J, Řehák S, Stibal M, Řeháková K, Šabacká M, Kostka S (2007) Glacier caves and drainage systems of the northern part of Hornsund area, southwest Spitsbergen, Svalbard. In: Abstracts of the 8th GLACKIPR Symposium, Sosnowiec, Poland

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596. doi:10.1007/s00300-002-0388-5

    Google Scholar 

  • Sigler WV, Crivii S, Zeyer J (2002) Bacterial success in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316

    Article  CAS  PubMed  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  CAS  PubMed  Google Scholar 

  • Stibal M, Tranter M (2007) Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. J Geophys Res Biogeosci 112:G04S33. doi:10.1029/2007JG000429

  • Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: the impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654. doi:10.1007/s00248-006-9083-3

    Article  PubMed  Google Scholar 

  • Stibal M, Tranter M, Benning LG, Řehák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178. doi:10.1111/j.1462-2920.2008.01620.x

    Article  CAS  PubMed  Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696. doi:10.1046/j.1365-2389.2003.00570.x

    Article  Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 321–340

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Program Support of Targeted Research in the Academy of Sciences of the Czech Republic (AV 0Z60050516) and by the grant GA ASCR KJB6005409. The University of Wrocław kindly enabled us to stay at Baranowski station. J. Elster stimulated this research and helped with sample collection. Field assistance by S. Řehák is also greatly acknowledged. Many thanks to N.Wright for the language corrections in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Řeháková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řeháková, K., Stibal, M., Šabacká, M. et al. Survival and colonisation potential of photoautotrophic microorganisms within a glacierised catchment on Svalbard, High Arctic. Polar Biol 33, 737–745 (2010). https://doi.org/10.1007/s00300-009-0751-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0751-x

Keywords

Navigation