Skip to main content
Log in

Zooplankton feeding on algae and bacteria under ice in Lake Druzhby, East Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The feeding of the cladoceran Daphniopsis studeri on algae and bacteria was investigated under ice in an ultra-oligotrophic Antarctic lake from late autumn (May) to early spring (October) in 2004. D. studeri fed on both algae and bacteria with estimated filtering rates of 0.048 and 0.061 l ind−1 day−1), respectively. Algae seemed to be the major food resource for the D. studeri population, however at times of low algal densities the bacterioplankton represented an important alternative food resource. The D. studeri grazing impact on the algal and bacterial standing stock was in general low (0.6–4.6% removed per day), but during the winter period this organism can remove up to 34% of the bacterial production (BP). At times D. studeri grazing can temporarily have a significant impact on the BP rates, though their impact was relatively low when compared to viral-induced bacterial mortality in the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achenbach L, Lampert W (1997) Effects of elevated temperatures on threshold food concentrations and possible competitive abilities of differently sized cladoceran species. Oikos 79:469–476

    Article  Google Scholar 

  • Agasild H, Nõges T (2005) Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. J Plankton Res 11:1155–1174

    Google Scholar 

  • Akatova NA (1964) The occurrence of Daphniopsis studeri Ruhe (Cladocera) in the lakes of the Vestfold Hills, East Antarctica. Biological results of the Soviet Antarctic expedition (1955–58), studies of marine fauna (2). IPST, Jerusalem, pp 190–193

    Google Scholar 

  • Antia NJ, McAllister CD, Parsons TR, Stephens K, Strickland JDH (1963) Further measurements of primary production using a large-volume plastic sphere. Limnol Oceanogr 8:166–183

    Google Scholar 

  • Bayliss PR, Laybourn-Parry J (1995) Seasonal abundance and size variation in Antarctic populations of the cladoceran Daphniopsis studeri. Antarct Sci 7:393–394

    Article  Google Scholar 

  • Bell RT (1993) Estimating production of heterotrophic bacterioplankton via the incorporation of tritiated thymidine. In: Kemp BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. CRC, Boca Raton, pp 495–503

    Google Scholar 

  • Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimations. Appl Environ Microbiol 48:755–757

    PubMed  CAS  Google Scholar 

  • Brendelberger H (1991) Filter mesh size of cladocerans predict retention efficiency for bacteria. Limnol Oceanogr 36:884–894

    Google Scholar 

  • Dartnall HJG (2000) A limnological reconnaissance of the Vestfold Hills. ANARE Reports 141. Australian Antarctic Division, Kingston, 57 p

  • DeMott WR (1985) Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Arch Hydrobiol Beih Ergeb Limnol 21:125–134

    Google Scholar 

  • Eppley RW (1968) An incubation method for estimating the carbon content of phytoplankton in natural samples. Limnol Oceanogr 13:574–582

    Google Scholar 

  • Eppley RW, Carlucci AF, Holm-Hansen O, Kiefer D, McCarthy JJ, Venrick E, Williams PM (1971) Phytoplankton growth and composition in shipboard cultures supplied with nitrate, ammonium, or urea as the nitrogen source. Limnol Oceanogr 16:741–751

    CAS  Google Scholar 

  • Eppley RW, Harrison WG, Chisholm SW, Stewart E (1977) Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. J Mar Res 35:671–696

    CAS  Google Scholar 

  • Geertz-Hansen O, Olesen M, Bjørnsen PK, Larsen JB, Riemann B (1987) Zooplankton consumption of bacteria in a eutrophic lake and in experimental enclosures. Arch Hydrobiol 110:553–563

    Google Scholar 

  • Hagen W, Auel H (2001) Seasonal adaptations on the role of lipids in oceanic zooplankton. Zoology 104:313–326

    Article  PubMed  CAS  Google Scholar 

  • Hansson L-A, Tranvik L (2003) Food webs in sub-Antarctic lakes: a stable isotope approach. Polar Biol 26:783–788

    Article  Google Scholar 

  • Henshaw T, Laybourn-Parry J (2002) The annual patterns of photosynthesis in two large freshwater, ultra-oligotrophic Antarctic lakes. Polar Biol 25:744–752

    Google Scholar 

  • Hwang S-J, Heath RT (1999) Zooplankton bacterivory at coastal and offshore sites of Lake Erie. J Plankton Res 21:699–719

    Article  Google Scholar 

  • Jarvis AC (1988) Diel zooplankton community feeding activity and filtration rates of Pseudoboeckella volucris and Daphniopsis studeri on sub-antarctic Marion Island. Hydrobiologia 164:13–21

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Jensen JP (1996) Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. J Plankton Res 18:1605–1625

    Article  Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol 109:445–454

    CAS  Google Scholar 

  • Jürgens K (1994) Impact of Daphnia on planktonic microbial food webs—a review. Mar Microb Food Webs 8:295–324

    Google Scholar 

  • Karlsson J, Säwström C (2009) Benthic algae support zooplankton growth during winter in a clear-water lake. Oikos. doi:10.1111/j.1600-0706.2008.17239.x

  • Kirchman D (2001) Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. In: Paul JH (ed) Marine microbiology—methods in microbiology. Academic, London, pp 225–237

    Google Scholar 

  • Lampert W, Brendelberger H (1996) Strategies of phenotypic low-food adaptation in Daphnia: filter screens, mesh sizes, and appendage beat rates. Limnol Oceanogr 41:216–233

    Google Scholar 

  • Lampert W, Schober U (1980) The importance of “threshold” food concentrations. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. American Society of Limnology and Oceanography special symposium number 3. University Press of New England, Hanover, pp 264–267

    Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Philos Trans R Soc Lond B Biol Sci 357:863–869

    Article  PubMed  CAS  Google Scholar 

  • Laybourn-Parry J, Bayliss P (1996) Seasonal dynamics of the planktonic community in Lake Druzhby, Princess Elizabeth Land, Eastern Antarctica. Freshw Biol 35:57–67

    Article  Google Scholar 

  • Laybourn-Parry J, Marchant HJ (1992) Daphniopsis studeri (Crustacea: Cladocera) in lakes of the Vestfold Hills, Antarctica. Polar Biol 11:631–635

    Article  Google Scholar 

  • Laybourn-Parry J, Henshaw T, Jones DJ, Quayle W (2004) Bacterioplankton production in freshwater Antarctic lakes. Freshw Biol 49:735–744

    Article  CAS  Google Scholar 

  • Murray AG, Eldridge PM (1994) Marine viral ecology: incorporation of bacteriophage into the microbial planktonic food web paradigm. J Plankton Res 16:627–641

    Article  Google Scholar 

  • Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  • Nõges T (1998) Cladoceran grazing in Lake Võrtsjärv. Limnologica 28:67–74

    Google Scholar 

  • Pace ML, McManus GB, Findlay EG (1990) Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808

    Article  Google Scholar 

  • Parsons TR, Strickland JDH (1959) Proximate analysis of marine standing crops. Nature 184:2038–2039

    Article  CAS  Google Scholar 

  • Pedrós-Alió C, Brock TD (1983) The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshw Biol 13:227–239

    Article  Google Scholar 

  • Peterson BJ, Hobbie JE, Haney JF (1978) Daphnia grazing on natural bacteria. Limnol Oceaonogr 23:1039–1044

    Article  Google Scholar 

  • Pidgeon RWJ, Gardiner G (1987) Freshwater fauna of the Larsemann Hills. 1986–87 Australian Antarctic Research Program, Initial Field Reports. Antarctic Division, Hobart

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Priscu JC, Wolf CF, Takacs CD, Fritsen CH, Laybourn-Parry J, Roberts EC, Lyons WB (1999) Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49:997–1008

    Article  Google Scholar 

  • Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052

    Article  CAS  Google Scholar 

  • Riemann B (1985) Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl Environ Microbiol 50:187–193

    PubMed  CAS  Google Scholar 

  • Riemann B, Bosselmann S (1984) Daphnia grazing on natural populations of bacteria. Verh Int Ver Theor Angew Limnol 22:795–799

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Säwström C, Anesio AM, Granéli W, Laybourn-Parry J (2007) Seasonal viral loop dynamics in two large ultra-oligotrophic Antarctic freshwater lakes. Microb Ecol 53:1–11

    Article  PubMed  Google Scholar 

  • Theil-Nielsen J, Søndergaard M (1998) Bacterial carbon biomass calculated from biovolumes. Arch Hydrobiol 141:195–207

    CAS  Google Scholar 

  • Wetzel RG, Likens GE (2000) Collection, enumeration, and biomass of zooplankton. In: Limnological analyses, 3rd edn. Springer, New York, pp 175–188

  • Wylie JL, Currie DJ (1991) The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol Oceanogr 36:708–728

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Marie Curie Scholarship, the Australian Antarctic Division and Vetenskapsrådet (VR) the Swedish Research Council. We would like to thank the winter crew at Davis station, Antarctica 2004 for logistical support and field assistance. We also thank Ann-Kristin Bergström for help with the identification of the algal culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christin Säwström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Säwström, C., Karlsson, J., Laybourn-Parry, J. et al. Zooplankton feeding on algae and bacteria under ice in Lake Druzhby, East Antarctica. Polar Biol 32, 1195–1202 (2009). https://doi.org/10.1007/s00300-009-0619-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0619-0

Keywords

Navigation