Skip to main content
Log in

A novel cis-acting element in the GmERF3 promoter contributes to inducible gene expression in soybean and tobacco after wounding

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Using in silico and functional analyses, we cloned and validated the expression profile of an inducible soybean promoter (GmERF3) along with its novel wound-induced and delayed expression (WIDE) element.

Abstract

Promoters and their contributing promoter elements are the main regulators of gene expression at the transcriptional level. Although the Ethylene Response Factor (ERF) gene family is one of the most well-studied stress-responsive gene families in plants, their promoter regions have received little attention. In this study, we investigated the expression patterns driven by the soybean (Glycine max) GmERF3 promoter and its cis-acting elements in soybean and tobacco. Transcriptomic data revealed that the native GmERF3 gene was differentially expressed in organs and tissues of plants. In transgenic soybeans containing a 1.3 kb GmERF3 promoter fused to the green fluorescent protein (gfp) gene, organ- and tissue-specificity was observed in untreated plants while mechanical wounding led to induction of GFP expression. Further in silico and in planta analyses of the GmERF3 promoter sequence in soybean revealed different cis-acting elements, including a novel cis-acting element, which contributed to increased expression, 1–2 days after mechanical wounding. We have named this DNA motif the wound-induced and delayed expression element (GGATTCAAGTTTAACC). A synthetic promoter containing a tetrameric repeat of this element showed high but late wound-induced GFP expression in leaves of transgenic tobacco. Our study expands the toolbox of inducible promoters and promoter elements for potential use in basic and applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Buenrostro-Nava MT, Ling PP, Finer JJ (2006) Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using an automated image acquisition system and image analysis. Plant Cell Rep 25:920–926

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze–thaw transformation and drug selection. Biotechniques 16:664–670

    CAS  PubMed  Google Scholar 

  • Chen T, Yang Q, Gruber M, Kang J, Sun Y et al (2012) Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39:6067–6075

    Article  CAS  PubMed  Google Scholar 

  • Chiera JM, Finer JJ, Grabau EA (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol Biol 56:895–904

    Article  CAS  PubMed  Google Scholar 

  • Chiera JM, Bouchard RA, Dorsey SL, Park E, Buenrostro-Nava MT et al (2007) Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26:1501–1509

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Develop Biol Plant 27:175–182

    Article  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  PubMed  Google Scholar 

  • Furtado A, Henry RJ, Takaiwa F (2008) Comparison of promoters in transgenic rice. Plant Biotechnol J 6:679–693

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Garcia C, Bouchard R, Rushton P, Jones M, Chen X et al (2010a) High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:237

    Article  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Chiera JM, Finer JJ (2010b) Robotics and dynamic image analysis for studies of gene expression in plant tissues. J Vis Exp 39. http://www.jove.com/index/details.stp?id=1733

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H et al (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollick JB, Gordon MP (1993) A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco. Plant Mol Biol 22:561–572

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG et al (1988) Leaf disc transformation. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic, Dordrecht, pp 1–9

  • Jin LG, Li H, Liu JY (2010) Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol 52:485–495

    CAS  PubMed  Google Scholar 

  • Kovalchuk N, Li M, Wittek F, Reid N, Singh R et al (2010) Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnol J 8:47–64

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Chua N (1990) GT-1 binding site confers light responsive expression in transgenic tobacco. Science 248:471–474

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li A, Zhang Z, Wang XC, Huang R (2009) Ethylene response factor TERF1 enhances glucose sensitivity in tobacco through activating the expression of sugar-related genes. J Integr Plant Biol 51:184–193

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ et al (2010) An integrated transcriptome atlas of the crop model (Glycine max) and its use in comparative analyses in plants. Plant J 63:86–99

    CAS  PubMed  Google Scholar 

  • Lichtenberg J, Kurz K, Liang X, Al-ouran R, Neiman L et al (2010) WordSeeker: concurrent bioinformatics software for discovering genome-wide patterns and word-based genomic signatures. BMC Bioinform 11(Suppl 12):S6

    Article  Google Scholar 

  • Liu JJ, Ekramoddoullah AK, Piggott N, Zamani A (2005) Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta 221:159–169

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazarei M, Puthoff DP, Hart JK, Rodermel SR, Baum TJ (2002) Identification and characterization of a soybean ethylene responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. Mol Plant Microbe Interact 15:577–586

    Article  CAS  PubMed  Google Scholar 

  • Mejia-Guerra MK, Pomeranz M, Morohashi K, Grotewold E (2012) From plant gene regulatory grids to network dynamics. Biochim Biophys Acta 1819:454–465

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Noh Y-S, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  CAS  PubMed  Google Scholar 

  • Park H, Kim M, Kang Y, Jeong J, Cheong M et al (2009) Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants. Mol Cells 27:475–480

    Article  CAS  PubMed  Google Scholar 

  • Park S-H, Bang S, Jeong J, Jung H, Redillas M et al (2012) Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta 235:1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Twyman RM, Gomez-Galera S, Naqvi S, Farre G et al (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  CAS  PubMed  Google Scholar 

  • Rasband W (1997) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://www.rsb.info.nih.gov/ij/

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K et al (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF et al (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol 147:280–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Severin A, Woody J, Bolon Y-T, Joseph B, Diers B et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Trans Res 21:429–437

    Article  CAS  Google Scholar 

  • Sugimoto K, Takeda S, Hirochika H (2003) Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J 36:550–564

    Article  CAS  PubMed  Google Scholar 

  • Toquin V, Grausem B, Geoffroy P, Legrand M (2003) Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene: identification of promoter sequences involved in gene inducibility by various stimuli. Plant Mol Biol 52:495–509

    Article  CAS  PubMed  Google Scholar 

  • Waclawovsky AJ, Freitas RL, Rocha CS, Contim LA, Fontes EP (2006) Combinatorial regulation modules on GmSBP2 promoter: a distal cis-regulatory domain confines the SBP2 promoter activity to the vascular tissue in vegetative organs. Biochim Biophys Acta 1759:89–98

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Chen X, Xu Z, Guan S et al (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59:4095–4107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Shao S, Li X, Zhai Y, Zhang Q et al (2012) Isolation and activity analysis of a seed-abundant soyAP1 gene promoter from soybean. Plant Mol Biol Rep 30:1400–1407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Eric Stockinger, Michelle Jones and Anne Dorrance for critical review of this manuscript and constructive suggestions, Dr. Paul Rushton (Texas A&M University) for his advice on use of synthetic promoters, Cheri Nemes and Amanda Miller for technical assistance with plant transformation, and Dr. Lonnie Welch and Xiaoyu (Veronica) Liang (Ohio University) for their advice using WordSeeker. Salaries and research support were provided by State and Federal funds appropriated to The Ohio State University/Ohio Agricultural Research and Development Center. This research was also partially supported by the United Soybean Board and by a fellowship from Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, to CMHG. Mention of trademark or proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC and also does not imply approval to the exclusion of other products that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Finer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Garcia, C.M., Finer, J.J. A novel cis-acting element in the GmERF3 promoter contributes to inducible gene expression in soybean and tobacco after wounding. Plant Cell Rep 35, 303–316 (2016). https://doi.org/10.1007/s00299-015-1885-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1885-7

Keywords

Navigation