Skip to main content
Log in

Accelerating smooth molecular surface calculation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This study proposes a novel approach, namely, skin flow complex algorithm (SFCA), to decompose the molecular skin surface into topological disks. The main contributions of SFCA include providing a simple decomposition and fast calculation of the molecular skin surface. Unlike most existing works which partition the molecular skin surface into sphere and hyperboloid patches, SFCA partitions the molecular skin surface into triangular quadratic patches and rectangular quadratic patches. Each quadratic patch is proven to be a topological disk and rendered by a rational Bézier patch. The skin surface is constructed by assembling all rational Bézier patches. Experimental results show that the SFCA is more efficient than most existing algorithms, and produces a triangulation of molecular skin surface which is decomposable, deformable, smooth, watertight and feature-preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28(1):235–242

    Article  Google Scholar 

  • Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68(3):441–451

    Article  Google Scholar 

  • Chau S, Oberneder M, Galligo A, Jüttler B (2008) Intersecting biquadratic Bézier surface patches. In: Piene R, Jüttler B (eds) Geometric modeling and algebraic geometry. Springer, pp 161–180. doi:10.1007/978-3-540-72185-7_9

  • Chavent M, Levy B, Maigret B (2008) Metamol: high-quality visualization of molecular skin surface. J Mol Graph Model 27(2):209–216

    Article  Google Scholar 

  • Chavent M, Lévy B, Krone M, Bidmon K, Nominé JP, Ertl T, Baaden M (2011) GPU-powered tools boost molecular visualization. Brief Bioinform 12:bbq089

  • Cheng H (2002) Algorithms for smooth and deformable surfaces in 3D. PhD thesis, Computer Science Department, UIUC. http://www.comp.nus.edu.sg/~hcheng/PhD.pdf

  • Cheng HL, Shi X (2004) Guaranteed quality triangulation of molecular skin surfaces. In: Proceedings of the conference on visualization’04. IEEE Computer Society, pp 481–488

  • Cheng HL, Shi X (2005) Quality mesh generation for molecular skin surfaces using restricted union of balls. In: Visualization, 2005. VIS 05. IEEE. IEEE, pp 399–405

  • Cheng HL, Yan K (2010) Mesh deformation of dynamic smooth manifolds with surface correspondences. In: Hliněný P, Kučera A (eds) Mathematical foundations of computer science. Springer, Berlin, Heidelberg, pp 677–688

    Google Scholar 

  • Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16(5):548–558

    Article  Google Scholar 

  • Connolly ML (1985) Molecular surface triangulation. J Appl Crystallogr 18(6):499–505

    Article  Google Scholar 

  • De Berg M, Van Kreveld M, Overmars M, Schwarzkopf OC (2000) Computational geometry. Springer, Berlin

    Book  MATH  Google Scholar 

  • Decherchi S, Rocchia W (2013) A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale. PLoS ONE 8(4):e59744

    Article  Google Scholar 

  • Dugan JM, Altman RB (2004) Using surface envelopes for discrimination of molecular models. Protein Sci 13(1):15–24

    Article  Google Scholar 

  • Edelsbrunner H (1992) Weighted alpha shapes. University of Illinois at Urbana-Champaign, Department of Computer Science

    Google Scholar 

  • Edelsbrunner H (1999) Deformable smooth surface design. Discrete Comput Geom 21(1):87–115

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner H (2001) Geometry and topology for mesh generation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph (TOG) 13(1):43–72

    Article  Google Scholar 

  • Edelsbrunner H, Shah NR (1994) Triangulating topological spaces. In: Proceedings of the 10th annual symposium on computational geometry. ACM, pp 285–292

  • Fabri A, Pion S (2009) CGAL: the computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 538–539

  • Farin GE (1999) NURBS: from projective geometry to practical use. AK Peters Ltd, Natick

    MATH  Google Scholar 

  • Gao L, Lai YK, Huang QX, Hu SM (2013) A data-driven approach to realistic shape morphing. In: Navazo I, Poulin P (eds) Computer graphics forum, vol 32. Wiley, Somerset, New Jersey, US, pp 449–457

  • Greer J, Bush BL (1978) Macromolecular shape and surface maps by solvent exclusion. Proc Natl Acad Sci 75(1):303–307

    Article  Google Scholar 

  • Kruithof N, Vegter G (2005) Meshing skin surfaces with certified topology. In: 2005. 9th international conference on computer aided design and computer graphics. IEEE, p 6

  • Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55(3):379IN3–400IN4

  • Lindow N, Baum D, Prohaska S, Hege HC (2010) Accelerated visualization of dynamic molecular surfaces. In: Melançon G, Munzner T, Weiskopf D (eds) Computer graphics forum, vol 29. Wiley, Somerset, New Jersey, US, pp 943–952

  • Lipkowitz KB, Boyd DB (2000) Reviews in computational chemistry:*, vol 13. Wiley, Hoboken

    Google Scholar 

  • Nishita T, Nakamae E (1994) A method for displaying metaballs by using bézier clipping. In: Dahlen M, Kjelldahl L (eds) Computer graphics forum, vol 13. Wiley, Somerset, New Jersey, US, pp 271–280

  • Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6(1):151–176

    Article  Google Scholar 

  • Rogers DF (2000) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam

    Google Scholar 

  • Velho L, Gomes J (1996) Approximate conversion of parametric to implicit surfaces. In: Computer graphics forum, vol 15. Wiley, Somerset, New Jersey, US, pp 327–337

  • Yan K, Cheng HL (2013) On simplifying deformation of smooth manifolds defined by large weighted point sets. In: Akiyama J, Kano M, Sakai T (eds) Computational geometry and graphs. Springer, Berlin, Heidelberg, pp 150–161

    Chapter  Google Scholar 

  • Yan K, Wang B, Cheng H, Ji Z, Huang J, Gao Z (2017) Molecular skin surface-based transformation visualization between biological macromolecules. J Healthc Eng 2017:12. doi:10.1155/2017/4818604

    Article  Google Scholar 

  • You ZH, Li J, Gao X, He Z, Zhu L, Lei YK, Ji Z (2015) Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. Biomed Res Int 2015:867516. doi:10.1155/2015/867516

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China (No. 61602431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Ji.

Additional information

Availability and implementation: source code for SFCA are freely available online at http://www.keddiyan.com/files/SFCA.html.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Cheng, HL., Ji, Z. et al. Accelerating smooth molecular surface calculation. J. Math. Biol. 76, 779–793 (2018). https://doi.org/10.1007/s00285-017-1156-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1156-z

Keywords

Mathematics Subject Classification

Navigation