Skip to main content

Molecular Surface Mesh Smoothing with Subdivision

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2023)

Abstract

Smoothing with subdivision has several popular techniques. However, these techniques have several limitations including mesh deformation, no care of mesh quality, and increasing mesh complexity. Molecular meshes having a distinct surface with abrupt changes from concave to convex and vice versa are further challenging for these techniques. In this paper, we formulated a smoothing algorithm for molecular surface meshes. This algorithm integrates the advantages of three well-known algorithms including Catmull-Clarck, Loop, and Centroidal Voronoi tessellation (CVT) with an error control module. CVT is used for pre-processing, and the remaining two for smoothing. We find new vertices like Catmull-Clarck and connect them like Loop. Unlike Catmull-Clark, which is generating a quad mesh, we establish a new connection making it triangular. We control the geometric loss by backward translation of the vertices toward the input mesh. We compared the results with previous methods and tested the algorithm with different numerical analysis and modeling applications. We found our results with significant improvements and always robust for downstream applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gui, S., Khan, D., Wang, Q., Yan, D.-M., Lu, B.-Z.: Frontiers in biomolecular mesh generation and molecular visualization systems. Vis. Comput. Ind. Biomed. Art 1, 7:1–7:13 (2018)

    Google Scholar 

  2. Chen, M., Tu, B., Lu, B.: Triangulated manifold meshing method preserving molecular surface topology. J. Mol. Graph. Model. 38, 411–418 (2012)

    Article  Google Scholar 

  3. Mazala, D., Esperança, C., Marroquim, R.: Laplacian face blending. Comput. Animat. Virtual Worlds 34(2), e2044 (2023)

    Article  Google Scholar 

  4. Dai, J., Fan, R., Song, Y., Guo, Q., He, F.: Mean: an attention-based approach for 3D mesh shape classification. Vis. Comput. 1–14 (2023)

    Google Scholar 

  5. Bukenberger, D.R., Lensch, H.P.: Be water my friend: mesh assimilation. Vis. Comput. 37(9–11), 2725–2739 (2021)

    Article  Google Scholar 

  6. Xu, R., et al.: A variational approach for feature-aware b-spline curve design on surface meshes. Vis. Comput. 39, 1–15 (2023)

    Article  Google Scholar 

  7. Khan, D., Yan, D.-M., Gui, S., Lu, B., Zhang, X.: Molecular surface remeshing with local region refinement. Int. J. Mol. Sci. 19(5), 1383:1–1383:20 (2018)

    Google Scholar 

  8. Khan, D., Plopski, A., Fujimoto, Y., Kanbara, M., Cheng, Z., Kato, H.: Valence optimization and angle improvement for molecular surface remeshing. Vis. Comput. 36(10), 2355–2368 (2020)

    Article  Google Scholar 

  9. Ströter, D., Mueller-Roemer, J.S., Weber, D., Fellner, D.: Fast harmonic tetrahedral mesh optimization. Vis. Comput. 38(9–10), 3419–3433 (2022)

    Article  Google Scholar 

  10. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  11. Loop, C.: Smooth subdivision surfaces based on triangles. Master thesis, Department of Mathematics, The University of Utah (1987)

    Google Scholar 

  12. Boyé, S., Guennebaud, G., Schlick, C.: Least squares subdivision surfaces. In: Computer Graphics Forum, vol. 29, pp. 2021–2028. Wiley Online Library (2010)

    Google Scholar 

  13. Liu, Y., et al.: On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28(4), 101:1–101:11 (2009)

    Google Scholar 

  14. Pan, Q., Xu, G., Xu, G., Zhang, Y.: Isogeometric analysis based on extended loop’s subdivision. J. Comput. Phys. 299, 731–746 (2015)

    Article  MathSciNet  Google Scholar 

  15. Chen, M., Lu, B.: Advances in biomolecular surface meshing and its applications to mathematical modeling. Chin. Sci. Bull. 58, 1843–1849 (2013)

    Article  Google Scholar 

  16. Khan, D., et al.: Surface remeshing: a systematic literature review of methods and research directions. IEEE Trans. Visual Comput. Graphics 28(3), 1680–1713 (2022)

    Article  Google Scholar 

  17. Liu, Y.-J., Xu, C., Fan, D., He, Y.: Efficient construction and simplification of Delaunay meshes. ACM Trans. Graph. 34(6), 174:1–174:13 (2015)

    Google Scholar 

  18. Cheng, S.-W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. CRC Press, Boca Raton (2012)

    Google Scholar 

  19. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  20. Schreiner, J., Scheidegger, C.E., Fleishman, S., Silva, C.T.: Direct (re)meshing for efficient surface processing. In: Computer Graphics Forum (Proc. EUROGRAPHICS), vol. 25, no. 3, pp. 527–536 (2006)

    Google Scholar 

  21. Hu, K., Yan, D.M., Bommes, D., Alliez, P., Benes, B.: Error-bounded and feature preserving surface remeshing with minimal angle improvement. IEEE Trans. Vis. Comput. Graph. 23(12), 2560–2573 (2017)

    Article  Google Scholar 

  22. Wang, Y., et al.: Isotropic surface remeshing without large and small angles. IEEE Trans. Vis. Comput. Graph. 25, 2430–2442 (2019)

    Article  Google Scholar 

  23. Liu, T., Chen, M., Lu, B.: Efficient and qualified mesh generation for Gaussian molecular surface using adaptive partition and piecewise polynomial approximation. SIAM J. Sci. Comput. 40(2), B507–B527 (2018)

    Article  MathSciNet  Google Scholar 

  24. Decherchi, S., Rocchia, W.: A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale. PLoS ONE 8, 1–15 (2013)

    Article  Google Scholar 

  25. Liu, T., Chen, M., Song, Y., Li, H., Lu, B.: Quality improvement of surface triangular mesh using a modified laplacian smoothing approach avoiding intersection. PLoS ONE 12, 1–16 (2017)

    Google Scholar 

  26. Dunyach, M., Vanderhaeghe, D., Barthe, L., Botsch, M.: Adaptive remeshing for real-time mesh deformation. In: Eurographics 2013 - Short Papers, pp. 29–32 (2013)

    Google Scholar 

  27. Wang, J., Yu, Z.: A novel method for surface mesh smoothing: applications in biomedical modeling. In: Clark, B.W. (ed.) Proceedings of the 18th International Meshing Roundtable, pp. 195–210. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04319-2_12

    Chapter  Google Scholar 

  28. Cheng, H.-L., Shi, X.: Quality mesh generation for molecular skin surfaces using restricted union of balls. Comput. Geom. 42(3), 196–206 (2009)

    Article  MathSciNet  Google Scholar 

  29. Quan, C., Stamm, B.: Meshing molecular surfaces based on analytical implicit representation. J. Mol. Graph. Model. 71, 200–210 (2017)

    Article  Google Scholar 

  30. Loop, C., Schaefer, S.: Approximating Catmull-Clark subdivision surfaces with bicubic patches. ACM Trans. Graph. 27, 1–11 (2008)

    Article  Google Scholar 

  31. Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 10(6), 356–360 (1978)

    Article  Google Scholar 

  32. Dyn, N., Levine, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 160–169 (1990)

    Article  Google Scholar 

  33. Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM Trans. Graph. 16, 420–431 (1997)

    Article  Google Scholar 

  34. Habib, A., Warren, J.: Edge and vertex insertion for a class of C1 subdivision surfaces. Comput. Aided Geom. Des. 16(4), 223–247 (1999)

    Article  Google Scholar 

  35. Prautzsch, H., Chen, Q.: Analyzing midpoint subdivision. Comput. Aided Geom. Des. 28(7), 407–419 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (No. 62150410433, 61972388), Shenzhen Science and Technology Program (GJHZ20210705141402008), and CAS-PIFI (No. 2020PT0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanglin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, D., Gui, S., Cheng, Z. (2024). Molecular Surface Mesh Smoothing with Subdivision. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50072-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50071-8

  • Online ISBN: 978-3-031-50072-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics