Skip to main content
Log in

Joint effects of mitosis and intracellular delay on viral dynamics: two-parameter bifurcation analysis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

To understand joint effects of logistic growth in target cells and intracellular delay on viral dynamics in vivo, we carry out two-parameter bifurcation analysis of an in-host model that describes infections of many viruses including HIV-I, HBV and HTLV-I. The bifurcation parameters are the mitosis rate r of the target cells and an intracellular delay τ in the incidence of viral infection. We describe the stability region of the chronic-infection equilibrium E* in the two-dimensional (r, τ) parameter space, as well as the global Hopf bifurcation curves as each of τ and r varies. Our analysis shows that, while both τ and r can destabilize E* and cause Hopf bifurcations, they do behave differently. The intracellular delay τ can cause Hopf bifurcations only when r is positive and sufficiently large, while r can cause Hopf bifurcations even when τ = 0. Intracellular delay τ can cause stability switches in E* while r does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beretta E, Kuang Y (2002) Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J Math Anal 33: 1144–1165

    Article  MathSciNet  MATH  Google Scholar 

  • Culshaw RV, Ruan SG (2000) A delay-differential equation model of HIV infection of CD4+ T-cells. Math Biosci 165: 27–39

    Article  MATH  Google Scholar 

  • De Leenheer P, Smith HL (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63: 1313–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Herz V, Bonhoeffer S, Anderson R, May R, Nowak M (1996) Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc Natl Acad Sci USA 93: 7247–7251

    Article  Google Scholar 

  • Korobeinikov A (2004) Global properties of basic virus dynamics models. Bull Math Biol 66: 879–883

    Article  MathSciNet  Google Scholar 

  • Li MY, Shu H (2010) Global dynamics of an in-host viral model with intracellular delay. Bull Math Biol 72: 1429–1505

    Article  MathSciNet  Google Scholar 

  • Li MY, Shu H (2010) Impact of intracellular delays and target-cell dynamics on in vivo viral infections. SIAM J Appl Math 70: 2434–2448

    Article  MathSciNet  MATH  Google Scholar 

  • Li MY, Shu H (2010) Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection, Bull Math Biol (published online)

  • Nelson PW, Murray J, Perelson A (2000) A model of HIV-1 pathogenesis that includes an intracellular delay. Math Biosci 163: 201–215

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson PW, Perelson AS (2002) Mathematical analysis of delay differential equation models of HIV-1 infection. Math Biosci 179: 73–94

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak MA, Bangham CRM (1996) Population dynamics of immune responses to persistent viruses. Science 272: 74–79

    Article  Google Scholar 

  • Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 93: 4398–4402

    Article  Google Scholar 

  • Nowak MA, May RM (2000) Virus dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Perelson AS, Kirschner DE, de Boer R (1993) Dynamics of HIV infection of CD4+ T cells. Math Biosci 114: 81–125

    Article  MATH  Google Scholar 

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev 41: 3–44

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M et al (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582–1586

    Article  Google Scholar 

  • Rong L, Perelson AS (2009) Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 260: 308–331

    Article  Google Scholar 

  • Tuckwell HC, Wan FYM (2004) On the behavior of solutions in viral dynamical models. Biosystems 73: 157–161

    Article  Google Scholar 

  • Wang L, Ellermeyer S (2006) HIV infection and CD4+ T cell dynamics. Discret Contin Dyn Syst B6: 1417–1430

    MathSciNet  Google Scholar 

  • Wang L, Li MY (2006) Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math Biosci 200: 44–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Li MY, Kirschner D (2002) Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. Math Biosci 179: 207–217

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Zhou YC, Wu JH, Heffernan J (2009) Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math Biosci 219: 104–112

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.Y., Shu, H. Joint effects of mitosis and intracellular delay on viral dynamics: two-parameter bifurcation analysis. J. Math. Biol. 64, 1005–1020 (2012). https://doi.org/10.1007/s00285-011-0436-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0436-2

Keywords

Mathematics Subject Classification (2000)

Navigation