Skip to main content

Global Stability of a Delay Virus Dynamics Model with Mitotic Transmission and Cure Rate

  • Chapter
  • First Online:
Mathematical Modelling and Analysis of Infectious Diseases

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 302))

  • 604 Accesses

Abstract

In this paper, we study the global properties of a basic model for viral infection with mitotic transmission, “cure” of infected cells, saturated infection rate, and a discrete intracellular delay. For our model, we derive some threshold parameters and establish a set of conditions which are sufficient to determine the global dynamics of the models. By using suitable Lyapunov functionals and the Lyapunov–Lasalle type theorem for delay systems, we prove the global asymptotic stability of all equilibria of our model. We also establish the occurrence of a Hopf bifurcation, determine conditions for the permanence of model, and the length of delay to preserve stability. Furthermore, we present some numerical simulations to illustrate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann, A.U., Lam, N.P., Dahari, H., Gretch, D.R., Wiley, T.E., Layden, T.J., Perelson, A.S.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-\(\alpha \) therapy. Science 282(5386), 103–107 (1998)

    Article  Google Scholar 

  2. Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Dahari, H., Lo, A., Ribeiro, R.M., Perelson, A.S.: Modeling hepatitis C virus dynamics: liver regeneration and critical drug efficacy. J. Theor. Biol. 247, 371–381 (2007)

    Article  MathSciNet  Google Scholar 

  4. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  Google Scholar 

  5. Wang, L., Ellermeyer, S.: HIV Infection and \(CD4^{+}\) T cell dynamics. Discrete Contin. Dyn. Syst. Ser. B 6, 1417–1430 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Wang, L., Li, M.Y.: Mathematical analysis of the global dynamics of a model for HIV infection of \(CD4^{+}\) T cells. Math. Biosci. 200, 44–57 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dahari, H., Shudo, E., Ribeiro, R.M., Perelson, A.S.: Modeling complex decay profiles of hepatitis B virus during antiviral therapy. Hepatology 49, 32–38 (2009)

    Article  Google Scholar 

  8. Gómez-Acevedo, H., Li, M.Y.: Backward bifurcation in a model for HTLV-I infection of \(CD4^{+}\) T cells. Bull. Math. Biol. 67, 101–114 (2005)

    Article  MathSciNet  Google Scholar 

  9. Wodarz, D., Bangham, C.R.M.: Evolutionary dynamics of HTLV-I. Immun. Today 50, 448–455 (2000)

    Google Scholar 

  10. Buonomo, B., Vargas-De-León, C.: Global stability for an HIV-1 infection model including an eclipse stage of infected cells. J. Math. Anal. Appl. 385, 709–720 (2012)

    Article  MathSciNet  Google Scholar 

  11. Lewin, S.R., Ribeiro, R.M., Walters, T., Lau, G.K., Bowden, S., Locarnini, S., Perelson, A.S.: Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34, 1012–1020 (2001)

    Article  Google Scholar 

  12. Tsiang, M., Gibbs, C.S.: Analysis of hepatitis B virus dynamics and its impact on antiviral development. In: Hamatake, R.K., Lau, J.Y.N. (eds.) Hepatitis B and D Protocols, volume 2. Methods in Molecular Medicine, vol. 96, pp. 361–377. Humana Press Inc., Totowa (2004)

    Google Scholar 

  13. Vargas-De-León, C.: Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay. Appl. Math. Comput. 219, 389–398 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Vargas-De-León, C.: Analysis of a model for the dynamics of hepatitis B with noncytolytic loss of infected cells. World J. Model. Simul. 8, 241–320 (2012)

    Google Scholar 

  15. Allali, K., Harroudi, S., Torres, D.F.M.: Analysis and optimal control of an intracellular delayed HIV model with CTL immune response. Math. Comput. Sci. 12(2), 111–127 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mendonca, J.P., Gleria, I., Lyra, M.L.: Delay-induced bifurcations and chaos in a two-dimensional model for the immune response. Physica A: Statistical Mech. Appl. 517, 484–490 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hattaf, K.: Spatiotemporal dynamics of a generalized viral infection model with distributed delays and CTL immune response. Computation 7(2), 21 (2019)

    Article  Google Scholar 

  18. Prakash, M., Rakkiyappan, R., Manivannan, A., Cao, J.: Dynamical analysis of antigen-driven T-cell infection model with multiple delays. Appl. Math. Comput. 354, 266–281 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Ávila-Vales, E., Chan-Chí, N., García-Almeida, G.E., Vargas-De-León, C.: Stability and Hopf bifurcation in a delayed viral infection model with mitosis transmission. Appl. Math. Comput. 259, 293–312 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Avendaño, R., Esteva, L., Flores, J.A., Allen, J.L., Gómez, G., López Estrada, J.E.: A mathematical model for the dynamics of hepatitis C. Comput. Math. Methods Med. 4(2), 109–118 (2002)

    MATH  Google Scholar 

  21. Song, L., Ma, C., Li, Q., Fan, A., Wang, K.: Global dynamics of a viral infection model with full ligistic terms and antivirus treatments. Int. J. Biomath. 10(01), 1750012 (2017)

    Article  MathSciNet  Google Scholar 

  22. Li, D., Ma, W.: Asymptotic properties of an HIV-1 infection model with time delay. J. Math. Anal. Appl. 335, 683–691 (2007)

    Article  MathSciNet  Google Scholar 

  23. Song, X., Neumann, A.U.: Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl. 329, 281–297 (2007)

    Article  MathSciNet  Google Scholar 

  24. Regoes, R.R., Ebert, D., Bonhoeffer, S.: Dose-dependent infection rates of parasites produce the Allee effect in epidemiology. Proc. R. Soc. Lond. Ser. B 269, 271–279 (2002)

    Article  Google Scholar 

  25. Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. 70(7), 2693–2708 (2010)

    Article  MathSciNet  Google Scholar 

  26. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  27. Vargas-De-León, C.: Global properties for virus dynamics model with mitotic transmission and intracellular delay. J. Math. Anal. Appl. 381, 884–890 (2011)

    Article  MathSciNet  Google Scholar 

  28. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  29. Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002)

    Article  MathSciNet  Google Scholar 

  30. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  Google Scholar 

  31. Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–396 (1989)

    Article  MathSciNet  Google Scholar 

  32. Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)

    Article  MathSciNet  Google Scholar 

  33. Shampine, L.F., Thompson, S.: Solving Delay Differential Equations with dde23 (2000). https://www.radford.edu/~thompson/webddes/tutorial.pdf

  34. Liu, X., Wang, H., Hu, Z., Ma, W.: Global stability of an HIV pathogenesis model with cure rate. Nonlinear Anal. RWA 12, 2947–2961 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Muroya, Y., Enatsu, Y.: On global stability of an HIV pathogenesis model with cure rate. Math. Methods Appl. Sci. 38(17), 4001–4018 (2015)

    Article  MathSciNet  Google Scholar 

  36. Li, M.Y., Wang, L.: Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral teatment. Nonlinear Anal. RWA 17, 147–160 (2014)

    Article  Google Scholar 

  37. Hattaf, K., Yousfi, N., Tridane, A.: Mathematical analysis of a virus dynamics model with general incidence rate and cure rate. Nonlinear Anal. RWA 13, 1866–1872 (2012)

    Article  MathSciNet  Google Scholar 

  38. Li, M.Y., Shu, H.: Impact of intracellular delays and target-cell dynamics on in vivo viral infections. SIAM J. Appl. Math. 70(7), 2434–2448 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad Autónoma de Yucatán and Mexican CONACYT under SNI grant numbers 15284 and 33365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Avila-Vales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avila-Vales, E., Canul-Pech, A., García-Almeida, G.E., Pérez, Á.G.C. (2020). Global Stability of a Delay Virus Dynamics Model with Mitotic Transmission and Cure Rate. In: Hattaf, K., Dutta, H. (eds) Mathematical Modelling and Analysis of Infectious Diseases. Studies in Systems, Decision and Control, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-030-49896-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49896-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49895-5

  • Online ISBN: 978-3-030-49896-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics