Skip to main content
Log in

Design of regulation and dynamics in simple biochemical pathways

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Complex regulation of biochemical pathways in a cell is brought about by the interaction of simpler regulatory structures. Among the basic regulatory designs, feedback inhibition of gene expression is the most common motif in gene regulation and a ubiquitous control structure found in nature. In this work, we have studied a common structural feature (delayed feedback) in gene organisation and shown, both theoretically and experimentally, its subtle but important functional role in gene expression kinetics in a negatively auto-regulated system. Using simple deterministic and stochastic models with varying levels of realism, we present detailed theoretical representations of negatively auto-regulated transcriptional circuits with increasing delays in the establishment of feedback of repression. The models of the circuits with and without delay are studied analytically as well as numerically for variation of parameters and delay lengths. The positive invariance, boundedness of the solutions, local and global asymptotic stability of both the systems around the unique positive steady state are studied analytically. Existence of transient temporal dynamics is shown mathematically. Comparison of the two types of model circuits shows that even though the long-term dynamics is stable and not affected by delays in repression, there is interesting variation in the transient dynamical features with increasing delays. Theoretical predictions are validated through experimentally constructed gene circuits of similar designs. This combined theoretical and experimental study helps delineate the opposing effects of delay-induced instability, and the stability-enhancing property of negative feedback in the pathway behaviour, and gives rationale for the abundance of similar designs in real biochemical pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers D, Tomkins G (1966) Sequential transcription of the genes of the lactose operon and its regulation by protein synthesis. J Biol Chem 241: 4434–4443

    Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK, Bjørn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64: 2240–2246

    Google Scholar 

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633–1648

    Google Scholar 

  • Åström KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers. Princeton University Press, New Jersey, p 5

    Google Scholar 

  • Becskei A, Serrano L (2000) Engineering stability in gene networks by auto-regulation. Nature 405: 590–593

    Article  Google Scholar 

  • Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99: 9697–9702

    Article  Google Scholar 

  • Berridge M, Cobbold P, Cutbertson K (1988) Spatial and temporal aspects of cell signalling. Philos Trans R Soc Lond Ser B 320: 325–343

    Article  Google Scholar 

  • Berridge MJ (1997) The AM and FM of calcium signalling. Nature 386: 759–760

    Article  Google Scholar 

  • Birkhoff G, Rota GC (1982) Ordinary differential equations. Ginn, Boston

    Google Scholar 

  • Bliss R, Painter P, Marr A (1982) The role of feedback inhibition in stabilising the classical operon. J Theor Biol 97: 177–193

    Article  Google Scholar 

  • Blythe SP, Nisbet RM, Gurney WSC (1982) Instability and complex dynamic behaviour in population models with long time delays. Theor Popul Biol 22: 147–176

    Article  MathSciNet  MATH  Google Scholar 

  • Bratsun D, Volfson D, Tsimring LS, Hasty J (2005) Delay-induced stochastic oscillations in gene regulation. Proc Natl Acad Sci USA 102: 14593–14598

    Article  Google Scholar 

  • Bundschuh R, Hayot F, Jayaprakash C (2003) The role of dimerization in noise reduction of simple genetic networks. J Theor Biol 220: 261–269

    Article  Google Scholar 

  • Chou WY, Matthews KS (1989) Serine to cysteine mutations in trp repressor protein alter tryptophan and operator binding. J Biol Chem 264: 18314–18319

    Google Scholar 

  • Busenberg SN, van den Driessche P (1993) A method for proving the non existence of limit cycles. J Math Anal Appl 172: 463–479

    Article  MathSciNet  MATH  Google Scholar 

  • Caswell H (1972) A simulation study of a time lag population model. J Theor Biol 34: 419–439

    Article  Google Scholar 

  • Casey R, de Jong H, Gouzé JL (2006) Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J Math Biol 52(1): 27–56

    Article  MathSciNet  MATH  Google Scholar 

  • Crawford IP (1975) Gene rearrangements in the evolution of the tryptophan synthetic pathway. Bacteriol Rev 39: 87–120

    Google Scholar 

  • Cushing JM (1980) Model stability and instability in age-strucured populations. J Theor Biol 86: 709–730

    Article  MathSciNet  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933–936

    Article  Google Scholar 

  • Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L (2006) Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol 2: 41

    Article  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338

    Article  Google Scholar 

  • Franklin GF, Powell JD, Emami-Naeini A (2005) Feedback Control of Dynamic Systems, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Freedman HI, Gopalsamy K (1986) Global stability in time-delayed single species dynamics. Bull Math Biol 48: 485–492

    MathSciNet  MATH  Google Scholar 

  • Gaffney EA, Monk N (2006) Gene expression time delays and Turing pattern formation systems. Bull Math Biol 68: 99–130

    Article  MathSciNet  Google Scholar 

  • Gardner TS, Dolnik M, Collins JJ (1998) A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc Natl Acad Sci USA 95: 14190–14195

    Article  Google Scholar 

  • Gérard C, Goldbeter A (2009) Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc Natl Acad Sci USA 106: 21643–21648

    Article  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361

    Article  Google Scholar 

  • Goldberger R, Berberich M (1965) Seqeuntial repression and derepression of enzymes for his biosynthesus in Salmonella typhimurium. Proc Nat Acad Sci USA 54: 279–286

    Article  Google Scholar 

  • Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge University Press, Cambridge, p 605

    Book  MATH  Google Scholar 

  • Goodwin B (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3: 425–438

    Article  Google Scholar 

  • Gopalsamy K (1992) Stability and oscillations in delay differential equations of population dynamics. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287: 17–21

    Article  Google Scholar 

  • Hale J, Lunel SV (1993) Introduction to functional differential equations. Springer, New York

    MATH  Google Scholar 

  • Hale JK (1997) Theory of functional differential equations. Springer, New York

    Google Scholar 

  • Holmgren E, Crawford IP (1982) Regulation of tryptophan genes in Rhizobium leguminosarum. J Bacteriol 149: 1135–1137

    Google Scholar 

  • Hooshangi S, Weiss R (2006) The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos 6: 026108

    Article  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318–356

    Article  Google Scholar 

  • Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6: 451–464

    Article  Google Scholar 

  • Kolmanovskii VB, Nosov VR (1986) Stability of functional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Krishna S, Andersson AM, Semsey S, Sneppen K (2006) Structure and function of negative feedback loops at the interface of genetic and metabolic networks. Nucleic Acids Res 34(8): 2455–2462

    Article  Google Scholar 

  • Kuang Y (1993) Delay differential equations with application in population dynamics. Academic Press, New York

    Google Scholar 

  • Kulkarni VV, Kareenhalli V, Malakar P, Pao LY, Safonov MG, Viswanathan GA (2010) Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Bioinformatics 11(Suppl 1):S43. doi:10.1186/1471-2105-11-S1-S43

  • Leloup J-C, Goldbeter A (2008) Modeling the circadian clock: from molecular mechanism to physiological disorders. Bioessays 30: 590–600

    Article  Google Scholar 

  • Lewin B (1996) Genes VI. Oxford University Press, London

    Google Scholar 

  • Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13: 1398–1408

    Article  Google Scholar 

  • Li MY, Muldowney JS (1996) A geometric approach to global-stability problems. SIAM J Math Anal 27(4): 1070–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25: 1203–1210

    Article  Google Scholar 

  • Maeda YT, Sano M (2006) Regulatory dynamics of synthetic gene networks with positive feedback. J Mol Biol 359: 1107–1124

    Article  Google Scholar 

  • Maithreye R, Sinha S (2003) Modelling of simple Biochemical Pathways. In: Deutsch A, Falcke M, Howard J, Zimmermann W (eds) Function and regulation of cellular systems: experiments and models. Birkhauser, Basel, pp 251–257

    Google Scholar 

  • Maithreye R, Sinha S (2007) Propagation of extrinsic perturbation in a negatively autoregulated pathway. Phys Biol 4: 48–59

    Article  Google Scholar 

  • Maithreye R, Sarkar RR, Parnaik VK, Sinha S (2008) Delay-induced transient increase and heterogeneity in gene expression in negatively auto-regulated gene circuits. PLoS One 3(8): e2972

    Article  Google Scholar 

  • Malek-Zavarei M, Jamshidi M (1987) Time delay systems: analysis, optimization and applications. Applied Mathematics Series vol. 8. North Holland, Amsterdam

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298: 824–827

    Article  Google Scholar 

  • Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303: 1538–1542

    Article  Google Scholar 

  • Monk N (2003) Oscillatory expression of Hes1, p53, and NF-kB driven by transcriptional time delays. Curr Biol 3: 1409–1413

    Article  Google Scholar 

  • Neidhardt FC (Ed. in Chief), Curtiss R, Ingraham JLE, Lin CC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) (1996) Escherichia coli and Salmonella: cellular and molecular biology, vol. 2. American Society for Microbiology, pp 2898

  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-kB signalling control the dynamics of gene expression. Science 306: 704–708

    Article  Google Scholar 

  • Nevozhay D, Adams RM, Murphy KF, Josic K, Balazsi G (2009) Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci USA 106: 5123–5128

    Article  Google Scholar 

  • Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos 11: 277–286

    Article  MATH  Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415–418

    Article  Google Scholar 

  • Raser J, O’Shea E (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811–1814

    Article  Google Scholar 

  • Ropers D, de Jong H, Geiselmann J (2008) Mathematical modeling of genetic regulatory networks: stress responses in Escherichia coli. In: Fu P, Latterich M, Panke S (eds) Systems and synthetic biology. Wiley, Hoboken, pp 235–271

    Google Scholar 

  • Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323: 785–793

    Article  Google Scholar 

  • Santillan M, Mackey MC (2001) Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. Proc Natl Acad Sci USA 98(4): 1364–1369

    Article  Google Scholar 

  • Segel L (1980) Mathematical models in molecular and cellular biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sinha S, Ramaswamy R (1988) Complex behaviour of the repressible operon. J Theor Biol 132: 307–318

    Article  MathSciNet  Google Scholar 

  • Sinha S (1988) Theoretical study of tryptophan operon: application in microbial Technology. Biotechnol Bioeng 31: 117–124

    Article  Google Scholar 

  • Smolen P, Baxter D, Byrne J (2001) Modeling circadian oscillations with interlocking positive and negative feedback loops. J Neurosci 21: 6644–6656

    Google Scholar 

  • Smolen P, Baxter D, Byrne J (2002) A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys J 83: 2349–2359

    Article  Google Scholar 

  • Sriram K, Gopinathan M (2004) A two variable delay model for the circadian rhythm of Neurospora crassa. J Theor Biol 231: 23–38

    Article  MathSciNet  Google Scholar 

  • Starlinger P (1967) Sequential appearance of Galactose enzymes in E.Coli. Mol Gen Genet 100: 210–215

    Article  Google Scholar 

  • Swain P, Elowitz M, Siggia E (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99: 12795–12800

    Article  Google Scholar 

  • Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20: 433–440

    Article  Google Scholar 

  • Tyson JJ, Othmer HG (1978) The dynamics of feedback control circuits in biochemical pathways. In: Rosen R, Snell FM (eds) Progress in theoretical Biology, Vol. 11. Academic Press, New York, pp 1–62

    Google Scholar 

  • Tyson JJ (1983) Periodic enzyme synthesis and oscillatory repression: why is the period of oscillation close to the cell cycle time. J Theor Biol 103: 313–328

    Article  Google Scholar 

  • Yang X, Chen L, Chen J (1996) Permanence and positive periodic solution for the single-species nonautonomous delay diffusive model. Comput Math Appl 32: 109

    Article  MATH  Google Scholar 

  • Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36: 486–491

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somdatta Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, R.R., Maithreye, R. & Sinha, S. Design of regulation and dynamics in simple biochemical pathways. J. Math. Biol. 63, 283–307 (2011). https://doi.org/10.1007/s00285-010-0375-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0375-3

Keywords

Mathematics Subject Classification (2010)

Navigation