Skip to main content
Log in

Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we develop a new approach to deal with asymptotic behavior of the age-structured homogeneous epidemic systems and discuss its application to the MSEIR epidemic model. For the homogeneous system, there is no attracting nontrivial equilibrium, instead we have to examine existence and stability of persistent solutions. Assuming that the host population dynamics can be described by the stable population model, we rewrite the basic system into the system of ratio age distribution, which is the age profile divided by the stable age profile. If the host population has the stable age profile, the ratio age distribution system is reduced to the normalized system. Then we prove the stability principle that the local stability or instability of steady states of the normalized system implies that of the corresponding persistent solutions of the original homogeneous system. In the latter half of this paper, we prove the threshold and stability results for the normalized system of the age-structured MSEIR epidemic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreasen V. (1989) Disease regulation of age-structured host populations. Theor. Popul. Biol. 36, 214–239

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreasen V. (1993) The effect of age-dependent host mortality on the dynamics of an endemic disease. Math. Biosci. 114, 29–58

    Article  MATH  Google Scholar 

  3. Andreasen V. Instability in an SIR-model with age-dependent susceptibility. In: Arino O., Axelrod, D., Kimmel M., Langlais M. (eds) Mathematical Population Dynamics, vol 1. pp. 3–14. Wuerz Publishing, Winnipeg, (1995)

  4. Aron J.L. (1988) Acquired immunity dependent upon exposure in an SIRS epidemic model. Math. Biosci. 88, 37–47

    Article  MathSciNet  MATH  Google Scholar 

  5. Busenberg S., Hadeler K.P. (1990) Demography and epidemics. Math. Biosci. 101, 63–74

    Article  MathSciNet  MATH  Google Scholar 

  6. Busenberg S., Castillo-Chavez C. (1991) A general solution of the problem of mixing subpopulations and its application to risk- and age-structured epidemic models for the spread of AIDS. IMA J. Math. Appl. Med. Biol. 8, 1–29

    MathSciNet  MATH  Google Scholar 

  7. Cushing J.M.: An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71, SIAM, Philadelphia (1998)

  8. Cha Y., Iannelli M., Milner F.A.: Are multiple endemic equilibria possible ?, In: Arino O., Axelrod D., Kimmel M. (eds.) Advances in Mathematical Population Dynamics. -Molecules, Cells and Man. pp. 779–788. World Scientific, Singapore (1997)

  9. Cha Y., Iannelli M., Milner F.A. (1998) Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model. Math. Biosci. 150, 177–190

    Article  MathSciNet  MATH  Google Scholar 

  10. Cha Y., Iannelli M., Milner F.A. (2000) Stability change of an epidemic model. Dyn. Syst. Appl. 9, 361–376

    MathSciNet  MATH  Google Scholar 

  11. Cvjetanović B., Grab B., Dixon H. (1982) Epidemiological models of poliomyelitis and measles and their application in the planning of immunization programmes. Bull. World Health Organ. 60(3): 405–422

    Google Scholar 

  12. Diekmann O., Heesterbeek J.A.P., Metz J.A.J. (1990) On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382

    Article  MathSciNet  MATH  Google Scholar 

  13. Diekmann O., Heesterbeek J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. J. Wiley, Chichester (2000)

  14. Greenhalgh D. (1990) Vaccination campaigns for common childhood diseases. Math. Biosci. 100, 201–240

    Article  MathSciNet  MATH  Google Scholar 

  15. Greenhalgh G. (1993) Existence, threshold and stability results for an age-structured epidemic model with vaccination and a non-separable transmission coefficient. Int. J. Systems Sci. 24(4): 641–668

    MathSciNet  MATH  Google Scholar 

  16. Hadeler K.P., Waldstätter R., Wörz-Busekros A. (1988) Models for pair formation in bisexual populations. J. Math. Biol. 26, 635–649

    MathSciNet  MATH  Google Scholar 

  17. Hadeler K.P., Ngoma K. (1990) Homogeneous models for sexually transmitted diseases. Rocky Mt. J. Math. 20(4): 967–986

    Article  MathSciNet  MATH  Google Scholar 

  18. Hadeler K.P. (1992) Periodic solutions of homogeneous equations. J. Differ. Equations 95, 183–202

    Article  MathSciNet  MATH  Google Scholar 

  19. Hadeler K.P. (1993) Pair formation models with maturation period. J. Math. Biol. 32, 1–15

    Article  MathSciNet  MATH  Google Scholar 

  20. Heijmans H.J.A.M.: The dynamical behaviour of the age-size-distribution of a cell population, In: Metz J. A. J., Diekmann O. (eds.) The Dynamics of Physiologically Structured Populations. Lect. Notes. Biomath. vol. 68. pp. 185–202, Springer Berlin Heidelberg New York (1986)

  21. Hethcote H.W. (2000) The mathematics of infectious diseases. SIAM Rev. 42(4): 599–653

    Article  MathSciNet  MATH  Google Scholar 

  22. Iannelli M.: Mathematical Theory of Age-Structured Population Dynamics. Giardini Editori e Stampatori in Pisa (1995)

  23. Iannelli M., Martcheva M.: Homogeneous dynamical systems and the age-structured SIR model with proportionate mixing incidence. In: Iannelli M., Lumer G., (eds.) Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics Progress in Nonlinear Differential Equations and their applications, vol. 55,pp 227–251. Birkhäuser, Basel Boston Berlin (2003)

  24. Inaba H. (1988a) A semigroup approach to the strong ergodic theorem of the multistate stable population process. Math. Popul. Stud. 1(1): 49–77

    MathSciNet  MATH  Google Scholar 

  25. Inaba H. (1988b) Asymptotic properties of the inhomogeneous Lotka-Von Foerster system. Math. Popul. Stud. 1(3): 247–264

    MathSciNet  MATH  Google Scholar 

  26. Inaba H. (1990) Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434

    Article  MathSciNet  MATH  Google Scholar 

  27. Inaba H. (2001) Kermack and McKendrick revisited: the variable susceptibility model for infectious diseases. Japan J. Indust. Appl. Math. 18(2): 273–292

    MathSciNet  MATH  Google Scholar 

  28. Inaba H. (2006) Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discret. Contin. Dyn. Systems Series B 6(1): 69–96

    Article  MathSciNet  MATH  Google Scholar 

  29. Katzmann W., Dietz K. (1984) Evaluation of age-specific vaccination strategies. Theor. Popul. Biol. 25, 125–137

    Article  MATH  Google Scholar 

  30. Krasnoselskii M.A. (1964) Positive Solutions of Operator Equations. Noordhoff, Groningen

    Google Scholar 

  31. Manfredi P., Williams J.R. (2004) Realistic dynamics in epidemiological models: the impact of population decline on the dynamics of childhood infectious diseases Measles in Italy as an example. Math. Biosci. 192, 153–175

    Article  MathSciNet  MATH  Google Scholar 

  32. Marek I. (1970) Frobenius theory of positive operators: comparison theorems and applications SIAM J. Appl. Math. 19, 607–628

    MathSciNet  MATH  Google Scholar 

  33. McLean A.: Dynamics of childhood infections in high birthrate countries. In: Hoffman, G.W., Hraba T. (eds.) Immunology and Epidemiology, Lecture Notes in Biomath. vol. 65. pp. 171–197. Springer Berlin Heidelberg New York (1986)

  34. Milner F.A., Langlais M., Busenberg S.: Non-unique positive steady states in population dynamics and epidemic models and their stability. In: Martelli M., Cooke K., Cumberbatch E. (eds.) Differential Equations and Applications to Biology and to Industry, pp. 369–383 World Scientific, Singapore (1996)

  35. Mollison D. (ed) (1995) Epidemic Models: their Structure and Relation to Data. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Nagel R. (ed.): One-Parameter Semigroups of Positive Operators. Lecture are Notes in Mathematics, vol. 1184. Springer Berlin Heidelberg New York (1986)

  37. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Berlin Heidelberg New York (1983)

  38. Prüss J. (1981) Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11, 65–84

    Article  MathSciNet  MATH  Google Scholar 

  39. Sawashima I. (1964) On spectral properties of some positive operators. Nat. Sci. Report Ochanomizu Univ. 15: 53–64

    MathSciNet  MATH  Google Scholar 

  40. Thieme H.R.: Stability change for the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases. In: Differential Equation Models in Biology, Epidemiology and Ecology. Lecture Notes in Biomath. vol. 92. pp. 139–158. Springer Berlin Heidelberg New York (1991)

  41. Tuljapurkar S., Meredith John A.(1991) Disease in changing populations: growth and disequilibrium. Theor. Popul. Biol. 40, 322–353

    Article  MATH  Google Scholar 

  42. Webb G.F. (1985) Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York and Basel

    MATH  Google Scholar 

  43. Webb G.F.: Asynchronous exponential growth in differential equations with homogeneous nonlinearities. In: Dore G., Favini A., Obrecht E., Venni A., (eds.) Differential Equations in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 148. pp. 225–233. Dekker, New York (1993)

  44. Webb G.F.: Asynchronous exponential growth in differential equations with asymptotically homogeneous nonlinearities. Adv. Math. Sci. Appl. 3 43–55 (1993/94)

    Google Scholar 

  45. Yosida K. Functional Analysis, 6th edn. Springer Berlin Heidelberg New York (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Inaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, H. Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. J. Math. Biol. 54, 101–146 (2007). https://doi.org/10.1007/s00285-006-0033-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0033-y

Keywords

Mathematical Subject Classification (2000)

Navigation