Skip to main content
Log in

Threshold and stability results for an age-structured epidemic model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a mathematical model for an epidemic spreading in an age-structured population with age-dependent transmission coefficient. We formulate the model as an abstract Cauchy problem on a Banach space and show the existence and uniqueness of solutions. Next we derive some conditions which guarantee the existence and uniqueness for non-trivial steady states of the model. Finally the local and global stability for the steady states are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Func. Anal. 11, 346–384 (1972)

    Google Scholar 

  • Anderson, R. M., May, R. M.: Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. J. Hyg. Camb. 94, 365–436 (1985)

    Google Scholar 

  • Andreasen, V. A.: Dynamical models of epidemics in age-structured populations—analysis and simplification. Ph.D Thesis, Cornel University 1988

  • Busenberg, S., Cooke, K., Iannelli, M.: Endemic threshold and stability in a class of age-structured epidemics. SIAM J. Appl. Math. 48, 1379–1395 (1988)

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A., Liu, W. M.: Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989)

    Google Scholar 

  • Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups. In: Favini, A., Obrecht, E. (eds.) Differential equations in Banach spaces. (Lect. Notes Math., vol. 1223, pp. 61–73) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Dietz, K.: Transmission and control of arbovirus diseases. In: Ludwig, D., Cooke, K. L. (eds.) Proc. SIMS Conf. on Epidemiology, pp. 104–121. Philadelphia: SIAM 1975

    Google Scholar 

  • Dietz, K., Schenzle, D.: Proportionate mixing models for age-dependent infection transmission. J. Math. Biol. 22, 117–120 (1985)

    Google Scholar 

  • Dunford, N., Schwartz, J. T.: Linear operators. Part 1: General theory. New York: Wiley 1957

    Google Scholar 

  • Greenhalgh, D.: Analytical results on the stability of age-structured recurrent epidemic models. IMA J Math. Appl. Med. Biol. 4, 109–144 (1987)

    Google Scholar 

  • Greenhalgh, D.: Analytical threshold and stability results on age-structured epidemic models with vaccination. Theor. Popul. Biol. 33, 266–290 (1988a)

    Google Scholar 

  • Greenhalgh, D.: Threshold and stability results for an epidemic model with an age-structured meeting rate. IMA J. Math. Appl. Med. Biol. 5, 81–100 (1988b)

    Google Scholar 

  • Gripenberg, G.: On a nonlinear integral equation modelling an epidemic in an age-structured population. J. Reine Angew. Math. 341, 54–67 (1983)

    Google Scholar 

  • Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. London: Academic Press 1988

    Google Scholar 

  • Heijmans, H. J. A. M.: The dynamical behaviour of the age-size-distribution of a cell population. In: Metz, J. A. J., Diekmann, O. (eds.) The dynamics of physiologically structured populations. (Lect. Notes Biomath., vol. 68, pp. 185–202) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Hethcote, H. W.: Asymptotic behavior and stability in epidemic models. In: van den Driessche, P. (ed.) Mathematical problems in biology. Victoria Conference (Lect. Notes Biomath., vol. 2, pp. 83–92) Berlin Heidelberg New York: Springer 1974

    Google Scholar 

  • Hoppensteadt, F.: An age dependent epidemic model. J. Franklin Inst. 297(5), 325–333 (1974)

    MathSciNet  MATH  Google Scholar 

  • Hoppensteadt, F.: Mathematical theories of populations: Demographics, genetics and epidemics. Philadelphia: Society for Industrial and Applied Mathematics 1975

    Google Scholar 

  • Kato, T.: Perturbation theory for linear operators, 2nd edn. Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  • Knolle, H.: The general age-dependent endemic with age-specific contact rate. Biomet. J. 25, 469–475 (1983)

    MATH  Google Scholar 

  • Krasnoselskii, M. A.: Positive solutions of operator equations. Groningen: Noordhoff 1964a

    Google Scholar 

  • Krasnoselskii, M. A.: Topological methods in the theory of nonlinear integral equations. Oxford: Pergamon Press 1964b

    Google Scholar 

  • Krein, M. G., Rutman, M. A.: Linear operators leaving invariant a cone in a Banach space. Uspehi Mat. Nauk. 3, 3–95 (1948) (in Russian); English translation: Am. Mat. Soc. Transl. (1), 10, 199–325 (1950)

    Google Scholar 

  • Kufner, A., John, O., Fucik, S.: Function spaces. Leyden: Noordhoff 1977

    Google Scholar 

  • Marcati, P.: On a nonconservative hyperbolic system describing the nonlinear age dependent population growth. Comput. Math. Appl. 11, 207–222 (1985)

    Google Scholar 

  • Marek, I.: Frobenius theory of positive operators: comparison theorems and applications. SIAM J. Appl. Math. 19, 607–628 (1970)

    Google Scholar 

  • McKendrick, A.: Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1926)

    Google Scholar 

  • McLean, A.: Dynamics of childhood infections in high birthrate countries. In: Hoffmann, G. W., Hraba, T. (eds.) Immunology and epidemiology. (Lect. Notes Biomath., vol. 65, pp. 171–197) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Metz, J. A. J., Diekmann, O. (eds.): The dynamics of physiologically structured populations. (Lect. Notes Biomath., vol. 68) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Nagel, R. (ed.): One-parameter semigroups of positive operators. (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Niiro, F., Sawashima, I.: On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 16, 145–183 (1966)

    CAS  PubMed  Google Scholar 

  • Sawashima, I.: On spectral properties of some positive operators. Nat. Sci. Report Ochanomizu Univ. 15, 53–64 (1964)

    Google Scholar 

  • Schenzle, D.: An age-structured model of pre- and post-vaccination measles transmission. IMA J. Math. Appl. Med. Biol. 1, 169–191 (1984)

    Google Scholar 

  • Schenzle, D.: Control of virus transmission in age-structured populations. In: Capasso, V., Grosso, E., Paveri-Fontana, S. L. (eds.) Mathematics in biology and medicine. (Lect. Notes Biomath., vol. 57, pp. 171–178) Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  • Steinberg, S.: Meromorphic families of compact operators. Arch. Rat. Mech. Anal. 31, 372–379 (1968)

    Google Scholar 

  • Tudor, D. W.: An age-dependent epidemic model with application to measles. Math. Biosci. 73, 131–147 (1985)

    Google Scholar 

  • Webb, G. F.: Theory of nonlinear age-dependent population dynamics. New York Basel: Dekker 1985

    Google Scholar 

  • Yosida, K.: Functional analysis, 6th edn. Berlin Heidelberg New York: Springer 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, H. Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434 (1990). https://doi.org/10.1007/BF00178326

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00178326

Key words

Navigation