Skip to main content
Log in

Cloning and Stress-Induced Expression Analysis of Calmodulin in the Antarctic Alga Chlamydomonas sp. ICE-L

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) is a Ca2+-binding protein that plays a role in several Ca2+ signaling pathways, which dynamically regulates the activities of hundreds of proteins. The ice alga Chlamydomonas sp. ICE-L, which has the ability to adapt to extreme polar conditions, is a crucial primary producer in Antarctic ecosystem. This study hypothesized that Cam helps the ICE-L to adapt to the fluctuating conditions in the polar environment. It first verified the overall length of Cam, through RT-PCR and RACE-PCR, based on partial Cam transcriptome library of ICE-L. Then, the nucleotide and predicted amino acid sequences were, respectively, analyzed by various bioinformatics approaches to gain more insights into the computed physicochemical properties of the CaM. Potential involvements of Cam in responding to certain stimuli (i.e., UVB radiation, high salinity, and temperature) were investigated by differential expression, measuring its transcription levels by means of quantitative RT-PCR. Results showed that CaM was indeed inducible and regulated by high UVB radiation, high salinity, and nonoptimal temperature conditions. Different conditions had different expression tendencies, which provided an important basis for investigating the adaptation mechanism of Cam in ICE-L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alizadeh D, Cohen A (2010) Red light and calmodulin regulate the expression of the psbA binding protein genes in Chlamydomonas reinhardtii. Plant Cell Physiol 51(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. An ML, Mou SL, Zhang XW, Ye NH, Zheng Z, Cao SN, Xu D, Fan X, Wang YT, Miao JL (2013) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol 134:151–157

    Article  CAS  PubMed  Google Scholar 

  3. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166

    Article  CAS  Google Scholar 

  4. Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  CAS  PubMed  Google Scholar 

  5. Calabrese AN, Bowie JH, Pukala TL (2015) Structural analysis of calmodulin binding by nNOS inhibitory amphibian peptides. Biochemistry 54:567–576

    Article  CAS  PubMed  Google Scholar 

  6. D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2007) Alternative complex formation of the ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872

    Article  Google Scholar 

  7. Davis TN, Urdea MS, Masiarz FR, Thorner J (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47:423–431

    Article  CAS  PubMed  Google Scholar 

  8. Ding Y, Miao JL, Wang QF, Zheng Z, Li GY, Jian JC, Wu ZH (2008) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. Polar Biol 31:23–30

    Article  Google Scholar 

  9. Du L, Yang T, Puthanveettil SV, Poovaiah BW (2011) Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants. Coding and Decoding of Calcium Signals in Plants. Springer Berlin Heidelberg 177-233

  10. Fang RJ, Hu DQ, Zhang YH, Li L, Zhao WG, Liu L, Cheng JL, Qi JL, Yang YH (2011) Sequence analysis and expression of the calmodulin gene, MCaM-3, in mulberry (Morus L.). Genes Genom 33:97–103

    Article  CAS  Google Scholar 

  11. Francesco DF (2015) Antarctic ecosystems: an extreme environment in a changing world. Ethol Ecol Evol 27:335–344

    Article  Google Scholar 

  12. Frohnmeyer H, Bowler C, Zhu JK (1998) Different roles for calcium and calmodulin in phytochrome- and UV-regulated expression of chalcone synthase. Plant J 13:763–772

    Article  CAS  Google Scholar 

  13. Fu CP, Zhang JT, Zheng Y, Xu HB, Yu SN (2015) Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation. Int J Biol Macromol 79:235–239

    Article  CAS  PubMed  Google Scholar 

  14. Koo SC, Choi MS, Chun HJ, Shin DB, Park BS, Kim YH, Park HM, Seo HS, Song JT, Kang KY, Yun DJ, Chung WS, Cho MJ, Kim MC (2009) The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol Cells 27:563–570

    Article  CAS  PubMed  Google Scholar 

  15. Lai M, Brun D, Edelstein SJ, Novère NL (2015) Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. PLoS Comput Biol 11:e1004063

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu P, Miao J, Kan G, Zhang B, Li G (2004) Effect of UV-B on the morphology and ultrastructure of a strain of Antarctic cyanophyceae. Mar Sci 28:21–25

    Google Scholar 

  17. Liu YT, Zhang X, Sun HY, Yang Q, Zang XN, Zhang XC, Tan YM (2016) Cloning and transcription analysis of six members of the calmodulin family in Gracilaria lemaneiformis under heat shock. J Appl Phycol 28:643–651

    Article  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and PCR and the 2−∆∆CT method. Method 25:402–408

    Article  CAS  Google Scholar 

  19. Maghuly F, Borroto-Fernandez EG, Khan MA, Herndl A, Marzban G, Laimeret M (2009) Expression of calmodulin and lipid transfer protein genes in Prunus incisa x serrula under different stress conditions. Tree Physiol 29:437–444

    Article  CAS  PubMed  Google Scholar 

  20. Manda A, Liyanage MR, Zaidi A, Johnson CK (2008) Interchange of autoinhibitory domain conformations in plasma-membrane Ca2+-ATPase-calmodulin complexes. Protein Sci 17:555–562

    Article  Google Scholar 

  21. Marshall CB, Nishikawaa T, Osawab M, Stathopulosc PB, Ikuraa M (2015) Calmodulin and stim proteins: two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 460:5–21

    Article  CAS  PubMed  Google Scholar 

  22. McAinsh MR, Brownlee C, Hetherington AM (1997) Calcium ions as second messengers in guard cell signal transduction. Physiol Plant 100:16–29

    Article  CAS  Google Scholar 

  23. O’Day DH, Eshak K, Myre MA (2015) Calmodulin binding proteins and Alzheimer’s disease. J Alzheimers Dis 46:553–569

    Article  PubMed  PubMed Central  Google Scholar 

  24. Plieth C (2001) Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 218(1–2):1–23

    Article  CAS  PubMed  Google Scholar 

  25. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Proceedings of the U.S.-Japan Conference 1968, 63–95

  26. Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    Article  CAS  PubMed  Google Scholar 

  27. Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Regoli F, Nigro M, Bertoli E, Principato G, Orlando E (1997) Defenses against oxidative stress in the Antarctic scallop Adamussiumcolbecki and effects of acute exposure to metals. Hydrobiologia 355:139–144

    Article  CAS  Google Scholar 

  29. Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T (2013) Allosteric mechanism of water-channel gating by Ca(2+)-calmodulin. Nat Struct Mol Biol 20:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts DM, Lukas TJ, Watterson DM, Roux SJ (1986) Structure, function, and mechanism of action of calmodulin. Crit Rev Plant Sci 4:311–339

    Article  CAS  Google Scholar 

  31. Rosenthal DS, Simbulan-Rosenthal CM (2001) Calmodulin mediates UVB-induced apoptosis and differentiation in human keratinocytes. FASEB J 15:A172

    Article  Google Scholar 

  32. Saimi Y, Kung C (2002) Calmodulin as an ion channel subunit. Annu Rev Physiol 64:289–311

    Article  CAS  PubMed  Google Scholar 

  33. Schleicher M, Lukas TJ, Watterson DM (1984) Isolation and characterization of calmodulin from the motile green alga Chlamydomonas reinhardtii. Arch Biochem Biophys 229(1):33–42

    Article  CAS  PubMed  Google Scholar 

  34. Shao HB, Chu LY, Shao MA, Li SH, Yao JC (2008) Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnol Adv 26:503–510

    Article  CAS  Google Scholar 

  35. Takagi A, Iizuka H (1995) UVB-induced calmodulin increase in pig epidermis: analysis of the effect of the calmodulin antagonist, W-13. Arch Dermatol Res 287:326–332

    Article  CAS  PubMed  Google Scholar 

  36. Taylor DA, Sack JS, Maune JF, Beckingham K, Quiocho FA (1991) Structure of a recombinant calmodulin from drosophila melanogaster refined at 2.2-a resolution. J Biol Chem 266:21375–21380

    CAS  PubMed  Google Scholar 

  37. Thomas DN, Dieckmann GS (2002) Antarctic sea ice: a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tippens DF (2010) Methods, processes and compositions comprising the protein calmodulin (Cam) for treatment of damaged or aging skin, and/or hair loss. US Patent Application 2010/0098732 A1

  40. Walsh MP (1994) Calmodulin and the regulation of smooth muscle contraction. Mol Cell Biochem 135:21–41

    Article  CAS  PubMed  Google Scholar 

  41. Wang QF, Hou YH, Miao JL, Li GY (2009) Effect of UV-B radiation on the growth and antioxidant enzymes of Antarctic sea ice microalgae Chlamydomonas sp. ICE-L. Acta Physiol Plant 31:1097–1102

    Article  CAS  Google Scholar 

  42. Yang N, Peng CL, Cheng D, Huang Q, Xu GH, Gao F, Chen LB (2013) The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene 521:32–37

    Article  CAS  PubMed  Google Scholar 

  43. Yang TB, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  44. Zeng YL, Zhang HB, Lan HY, Zhang FC (2008) Cloning of BhNHX gene from betula halophila and its co-expressional regulation with CaM gene under different stresses. Acta Bot Boreal-Occident Sin 28:2408–2415

    CAS  Google Scholar 

  45. Zheng Z, Miao JL, Chen H, Zhang BT, Li GY (2006) Study on changes of plasmalemma permeability and some primary inorganic ions of Antarctic ice microalgae (Chlamydomonas sp. ICE-L) in the low-temperature stress. Chin J Polar Sci 17:20–29

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 41576187), the National Natural Science Foundation of China-Shandong Joint Fund (No. U1406402), the Polar Strategic Foundation of China (No. 20150303), the Basic Scientific Fund for National Public Research Institutes of China (No. 2015G10), the Key Research and Development Plan of Shandong Province (No. 2016ZDJS06A03), the Public Science and Technology Research Funds Projects of Ocean (No. 201405015), the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology and the Science (No. 2015ASKJ02), and Qingdao Entrepreneurship and Innovation Pioneers Program (No. 15-10-3-15-(44)-zch). The authors thank MogoEdit Co. for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-bin Wang or Jin-lai Miao.

Additional information

Ying-ying He and Yi-bin Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Yy., Wang, Yb., Zheng, Z. et al. Cloning and Stress-Induced Expression Analysis of Calmodulin in the Antarctic Alga Chlamydomonas sp. ICE-L. Curr Microbiol 74, 921–929 (2017). https://doi.org/10.1007/s00284-017-1263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1263-5

Keywords

Navigation