Skip to main content
Log in

Plant calcium signaling and monitoring: pros and cons and recent experimental approaches

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

This review focusses on Ca2+-mediated plant cell signaling and optical methods for in vivo [Ca2+] monitoring and imaging in plants. The cytosolic free calcium concentration has long been considered the central cellular key in plants. However, more and more data are turning up that critically question this view. Conflicting arguments show that there are still many open questions. One conclusion is that the cytosolic free Ca2+ concentration is just one of many cellular network parameters orchestrating complex cellular signaling. Novel experimental strategies which unveil interference of cellular parameters and communication of transduction pathways are required to understand this network. To date only optical methods are able to provide both kinetic and spatial information about cellular key parameters simultaneously. Focussing on calcium there are currently three classes of calcium indicators employed (i.e., chemical fluorescent dyes, luminescent indicators, and green-fluorescent-protein-based indicators). Properties and capabilities as well as advantages and disadvantages of these indicators when used in plant systems are discussed. Finally, general experimental strategies are mentioned which are able to answer open questions raised here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTZ:

coelenterazine

GFP:

green-fluorescent protein

FRET:

fluorescence resonance energy transfer

[Ca2+]:

calcium ion concentration

CaM:

calmodulin

CDPKs:

calmodulindomain protein kinases

IP3 :

inositol 1,4,5-trisphosphate

References

  • Abe T (1981) Chloride ion efflux during an action potential in the main pulvinus ofMimosa pudica. Bot Mag (Tokyo) 94: 379–383

    Google Scholar 

  • Aikens R (1999) Properties of low-light-level slow-scan detectors. In: Mason B (ed) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, pp 507–516

    Google Scholar 

  • Allen GJ, Amtmann A, Sanders D (1998) Calcium-dependent and calcium-independent K+ mobilization channels inVicia faba guard cell vacuoles. J Exp Bot 49: 305–318

    Google Scholar 

  • —, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics inArabidopsis guard cells. Plant J 19: 735–747

    Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289: 2338–2342

    Google Scholar 

  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389: 198–202

    Google Scholar 

  • Ashley CC, Ridgway EB (1968) Simultaneous recording of membrane potential calcium transient and tension in single muscle fibres. Nature 219: 1168–1169

    Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96: 11241–11246

    Google Scholar 

  • Barbier-Brygoo H, Joyard J, Pugin A, Ranjeva R (1997) Intracellular compartmentation and plant cell signaling. Trends Plant Sci 2: 214–222

    Google Scholar 

  • Baubet V, Mouellic HL, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single cell level. Proc Natl Acad Sci USA 97: 7260–7265

    Google Scholar 

  • Bauer CS, Plieth C, Förster B, Hansen U-P, Sattelmacher B, Simonis W, Schönknecht G (1997) Oscillations in cytosolic free calcium in a unicellular green alga. FEBS Lett 405: 390–393

    Google Scholar 

  • — —, Hansen U-P, Simonis W, Schönknecht G (1998a) A steep Ca2+-dependence of a K+ channel in a unicellular green alga. J Exp Bot 327: 1761–1765

    Google Scholar 

  • — —, Bethmann B, Popescu O, Hansen U-P, Sattelmacher B, Simonis W, Schönknecht G (1998b) Strontium-induced repetitive calcium spikes in a unicellular green alga. Plant Physiol 117: 545–557

    Google Scholar 

  • Baum G, Long JC, Jenkins GI, Trewavas AJ (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96: 13554–13559

    Google Scholar 

  • Berridge MJ (1997a) The AM and FM of calcium signaling. Nature 386: 759–760

    Google Scholar 

  • — (1997b) Elementary and global aspects of calcium signaling. J Physiol 499: 291–306

    Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283: 381–387

    Google Scholar 

  • Blackstone C, Sheng M (1999) Protein targeting and calcium signaling microdomains in neuronal cells. Cell Calcium 26: 181–192

    Google Scholar 

  • Blatt MR, Grabov A (1997) Signal redundancy gates and integration in the control of ion channels for stomatal movement. J Exp Bot 48: 529–537

    Google Scholar 

  • Blinks JR, Wier WG, Hess P, Prendergast FG (1982) Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40: 1–114

    Google Scholar 

  • Blumwald E, Aharon GS, Lam C-H (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3: 342–346

    Google Scholar 

  • Bowler C, Chua N-H (1994) Emerging themes of plant signal transduction. Plant Cell 6: 1529–1541

    Google Scholar 

  • Braam J (1992) Regulated expression of the calmodulin-related TCH genes in culturedArabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci USA 89: 3213–3216

    Google Scholar 

  • —, Sistrunk ML, Polisenski DH, Xu W, Purugganan MM, Antosiewicz DM, Campbell P, Johnson KA (1997) Plant response to environmental stress: regulation and function of theArabidopsis TCH genes. Planta 203: S35-S41

    Google Scholar 

  • Brauer M, Sers D, Stitt M (1990) Regulation of photosynthetic sucrose synthesis: a role of Ca2+? Planta 182: 236–243

    Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48–54

    Google Scholar 

  • Brini M, Marsault R, Bastianutto C, Alvarez J, Pozzan J, Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration [Ca2+]c: a critical evaluation. J Biol Chem 270: 9896–9903

    Google Scholar 

  • —, Pinton P, Pozzan T, Rizzuto R (1999) Targeted recombinant aequorins: tools for monitoring [Ca2+] in the various compartments of a living cell. Microsc Res Tech 46: 380–389

    Google Scholar 

  • Brownlee C (1994) Signal transduction during fertilization in algae and vascular plants. New Phytol 127: 399–423

    Google Scholar 

  • Bunk S (2000) Sorting the messages: when multipotent calcium sends signals oscillations help to select the right pathway. Scientist 14 (22): 17

    Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46: 95–122

    Google Scholar 

  • —, Wang T (1995) Diversity of calcium-efflux transporters in wheat aleurone cells. Planta 197: 19–30

    Google Scholar 

  • Camacho L, Parton R, Trewavas AJ, Malhó R (2000) Imaging cytosolic free-calcium distribution and oscillations in pollen tubes with confocal microscopy: a comparison of different dyes and loading methods. Protoplasma 212: 162–173

    Google Scholar 

  • Campbell AK (1988) Chemiluminescence: principles and applications in biology and medicine. VCH and Ellis Horwood, Weinheim and Chichester

    Google Scholar 

  • —, Trewavas AJ, Knight MR (1996) Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium 19: 211–218

    Google Scholar 

  • Chalfine M, Kain S (1998) Green fluorescent protein: properties, applications, and protocols. Wiley-Liss, New York

    Google Scholar 

  • Chory J, Wu D (2001) Weaving the complex web of signal transduction. Plant Physiol 125: 77–80

    Google Scholar 

  • Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM (1999) Dissection of the ozone-induced calcium signature. Plant J 17: 575–579

    Google Scholar 

  • Cosgrove DJ, Gilroy S, Kao T, Ma H, Schultz JC (2000) Plant signaling 2000: cross talk among geneticists, physiologists and ecologists. Plant Physiol 124: 499–505

    Google Scholar 

  • Cote GG, Grain RC (1994) Why do plants have phosphoinositides? BioEssay 16: 39–46

    Google Scholar 

  • Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. Plant Physiol 79: 207–211

    Google Scholar 

  • Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14: 315–319

    Google Scholar 

  • Creton R, Speksnijder JS, Jaffe LF (1998) Patterns of free calcium in zebra fish embryos. J Cell Sci 111: 1613–1622

    Google Scholar 

  • —, Kreiling JA, Jaffe LF (1999) Calcium imaging with chemiluminescence. Microsc Res Tech 46: 390–397

    Google Scholar 

  • Cubitt AB, Firtel RA, Fischer G, Jaffe LF, Miller AL (1995) Patterns of free calcium in multicellular stages ofDictyostelium expressing jellyfish apoaequorin. Development 121: 2219–2301

    Google Scholar 

  • Czempinski K, Zimmermann S, Ehrhardt T, Müller-Röber B (1997) New structure and function in plant K+ channels: KCO1 an outward rectifier with a steep Ca2+ dependency. EMBO J 16: 2565–2575

    Google Scholar 

  • Dangl JL, Preuss D, Schroeder JI (1995) Talking through walls: signaling in plant development. Cell 83: 1071–1077

    Google Scholar 

  • Dempster J (1999) Fast photometric measurements of cell function combined with electrophysiology. In: Mason B (ed) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, pp 196–209

    Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes inArabidopsis. Plant Physiol 124: 1511–1514

    Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386: 855–858

    Google Scholar 

  • —, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933–936

    Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to rhizobium nodulation signals. Cell 85: 673–681

    Google Scholar 

  • Ellis RJ, Wright AG (1999) Optimal use of photomultipliers for chemiluminescence and bioluminescence applications. Luminescence 14: 11–18

    Google Scholar 

  • Epstein E (1998) How calcium enhances plant salt tolerance. Science 280: 1906–1907

    Google Scholar 

  • Evans CH (1990) Biochemistry of the lanthanides. In: Frieden E (ed) Biochemistry of the elements, vol 18. Plenum, New York, pp 211–283

    Google Scholar 

  • Fagan TF, Ohmiya Y, Blinks JR, Inouye S, Tsuji FI (1993) Cloning, expression and sequence analysis of cDNA for the Ca2+-binding photoprotein mitrocomin. FEBS Lett 333: 301–305

    Google Scholar 

  • Falciatore A, Ribera d'Alcala M, Croot P, Bowler C (2000) Perception of environmental signals by a marine diatom. Science 288: 2363–2366

    Google Scholar 

  • Fawzy H, Overstreet R, Jacobson L (1954) The influence of hydrogen ion concentration on cation absorption by barley roots. Plant Physiol 29: 234–237

    Google Scholar 

  • Felle HH (1993) Developmental physiology: signal transduction. Prog Bot 54: 254–267

    Google Scholar 

  • — (1996) Control of cytoplasmic pH under anoxic conditions and its implication for plasma membrane proton transport inMedicago sauva root hairs. J Exp Bot 47: 967–973

    Google Scholar 

  • —, Bertl A (1986) Light induced cytoplasmic pH-changes and their interrelation to the activity of the electrogenic proton pump inRiccia fluitans. Biophys Biochim Acta 848: 176–182

    Google Scholar 

  • —, Kondorosi E, Kondorosi A, Schultze M (1999) Nod factors modulate the concentration of cytosolic free calcium differently in growing and non-growing root hairs ofMedicago sativa L. Planta 209: 207–212

    Google Scholar 

  • — — — — (2000) How alfalfa root hairs discriminate between NOD factors and oligochitin elicitors. Plant Physiol 124: 1373–1380

    Google Scholar 

  • Fricker MD, Plieth C, Knight H, Blancaflor E, Knight MR, White N, Gilroy S (1999) Fluorescence and luminescence techniques to probe ion activities in living plant cells. In: Mason B (ed) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, pp 569–596

    Google Scholar 

  • —, Parsons A, Tlalka M, Blancaflor E, Gilroy S, Meyer A, Plieth C (2001) Fluorescent probes for living plant cells. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology: a practical approach, 2nd edn. Oxford University Press. Oxford, pp 35–84

    Google Scholar 

  • Frohnmeyer H, Loyall L, Blatt MR, Grabov M (1999) Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures. Plant J 20: 109–117

    Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45: 463–469

    Google Scholar 

  • —, Spanswick R (1993) Characteristics of action potential in willow (Salix viminalis L). J Exp Bot 44: 1119–1125

    Google Scholar 

  • Gee KR, Brown KA, Chen W-NU, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27: 97–106

    Google Scholar 

  • Gilland E, Miller AL, Karplus E, Baker R, Webb SE (1999) Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci USA 96: 157–161

    Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346: 769–771

    Google Scholar 

  • —, Bethke PC, Jones RL (1993) Calcium homeostasis in plants. J Cell Sci 106: 453–462

    Google Scholar 

  • Gonzalez-Trueba G, Paradisi C, Zoratti M (1996) Synthesis of coelenterazine. Anal Biochem 240: 308–310

    Google Scholar 

  • Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95: 4778–4783

    Google Scholar 

  • Gu X, Spitzer NC (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375: 784–787

    Google Scholar 

  • Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in mitochondria. Cell 82: 415–424

    Google Scholar 

  • Haley A, Russell AJ, Wood N, Allan AC, Knight M, Campbell AK, Trewavas AJ (1995) Effects of mechanical signaling on plant cell cytosolic calcium. Proc Natl Acad Sci USA 92: 4124–4128

    Google Scholar 

  • Hansen U-P, Moldaenke C, Tabrizi H, Ramm D (1993) The effect of transthylakoid proton uptake on cytosolic pH and the imbalance of ATP and NADPH/H+ production as measured by CO2- and light-induced depolarisation of the plasmalemma. Plant Cell Physiol 34: 681–695

    Google Scholar 

  • Hanson JB (1984) The function of calcium in plant nutrition. In: Tinker PB, Läuchli A (eds) Advances in plant nutrition. Praeger, New York, pp 149–208

    Google Scholar 

  • Hardingham GE, Bading H (1999) Calcium as a versatile second messenger in the control of gene expression. Microsc Res Tech 46: 348–355

    Google Scholar 

  • Harmon AC (1997) The calcium connection. Trends Plant Sci 2: 121–122

    Google Scholar 

  • —, Gribskov M, Harper JF (2000) CDPKs: a kinase for every Ca2+ signal? Trends Plant Sci 5: 154–159

    Google Scholar 

  • Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58: 139–151

    Google Scholar 

  • Haugland RP (1999) Handbook of fluorescent probes and research chemicals. Molecular Probes Inc, Eugene, Oreg

    Google Scholar 

  • Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201: 121–157

    Google Scholar 

  • Herman B (1989) Resonance energy transfer microscopy. Methods Cell Biol 30: 219–243

    Google Scholar 

  • Hirschi KD (1999) Expression ofArabidopsis CAX1 in tobacco: altered calcium homeostatasis and increased stress sensitivity. Plant Cell 11: 2113–2122

    Google Scholar 

  • Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9: 1999–2010

    Google Scholar 

  • Homann U, Thiel G (1994) Cl and K+ channel currents during the action potential inChara: simultaneous recording of membrane voltage and patch currents. J Membr Biol 141: 297–309

    Google Scholar 

  • Huang F-Y, Philosoph-Hadas S, Meir S, Callaham DA, Sabato R, Zelcer A, Hepler PK (1997) Increases in cytosolic Ca2+ in parsley mesophyll cells correlate with leaf senescence. Plant Physiol 115: 51–60

    Google Scholar 

  • Hyrc KL, Bownik JM, Goldberg MP (2000) Ion selectivity of lowaffinity ratiometric calcium indicators: mag-Fura2 Fura-2FF and BTC. Cell Calcium 27: 75–86

    Google Scholar 

  • Inouye S, Noguchi M, Sakaki Y, Tagaki Y, Miyata T, Iwanaga S, Miyata T, Tsuji F (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci USA 82: 3154–3158

    Google Scholar 

  • Iyengar R (1996) Gating by cyclic AMP: expanded role for an old signaling pathway. Science 271: 461–463

    Google Scholar 

  • Jaffe LF (1980) Calcium explosions as triggers of development. Ann N Y Acad Sci 339: 86–101

    Google Scholar 

  • Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewawas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269: 1863–1865

    Google Scholar 

  • Kendall JM, Badminton MN (1998)Aequorea victoria bioluminescence moves into an exciting new era. Trends Biotechnol 16: 216224

    Google Scholar 

  • —, Sala-Neby G, Ghalaut V, Dormer RL, Campbell AK (1992) Engineering the Ca2+-activated photoprotein aequorin with reduced affinity for calcium. Biochem Biophys Res Commun 187: 1091–1097

    Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester J, Knight MR (2000) Cell-type-specific calcium responses to drought salt and cold inArabidopsis roots. Plant J 23: 267–278

    Google Scholar 

  • Kikuyama M, Tazawa M (1983) Transient increase of intracellular Ca2+ during excitation of tonoplast-freeChara cells. Protoplasma 117: 62–67

    Google Scholar 

  • — — (1998) Temporal relationship between action potential and Ca2+ transient in characean cells. Plant Cell Physiol 39: 1359–1366

    Google Scholar 

  • —, Oda K, Shimmen T, Hayama T, Tazawa M (1984) Potassium and chloride effluxes during excitation of characeae cells. Plant Cell Physiol 25: 965–974

    Google Scholar 

  • Kim K-N, Cheong YH, Gupta R, Luan S (2000) Interaction specificity ofArabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 124: 1844–1853

    Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195: 269–324

    Google Scholar 

  • —, Trewavas AJ, Knight MR (1996) Cold calcium signaling inArabidopsis involved two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 89–503

    Google Scholar 

  • — — — (1997a) Calcium signaling inArabidopsis thaliana responding to drought and salinity. Plant J 12: 1067–1078

    Google Scholar 

  • — — — (1997b) Recombinant aequorin methods for measurement of intracellular calcium in plants. Plant Mol Biol Manual C4: 1–22

    Google Scholar 

  • —, Brandt S, Knight MR (1998) A history of stress alters drought calcium signaling pathways inArabidopsis. Plant J 16: 681–687

    Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526

    Google Scholar 

  • —, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89: 4967–4971

    Google Scholar 

  • —, Read ND, Campbell AK, Trewavas AJ (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol 121: 83–90

    Google Scholar 

  • Köhler RH (1998) GFP for in vivo imaging of subcellular structures in plant cells. Trends Plant Sci 3: 317–320

    Google Scholar 

  • Koninck P de, Schulman (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279: 227–230

    Google Scholar 

  • Koshland DE Jr (1998) The era of pathway quantification. Science 280: 852–853

    Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins inArabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 96: 4718–4723

    Google Scholar 

  • Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in culture hippocampal neurons. Neuron 27: 447–459

    Google Scholar 

  • Läuchli A (1990) Calcium salinity and the plasma membrane. In: Leonard RT, Hepler PK (eds) Calcium in plant growth and development American Society of Plant Physiologists, Rockville, Md, pp 26–35 (Current topics in plant physiology, vol 4)

  • Lewis BD, Spalding EP (1998) Nonselective block by La3+ ofArabidopsis ion channels involved in signal transduction. J Membr Biol 162: 81–91

    Google Scholar 

  • Li W-H, Llopis J, Whitney M, Zlikarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392: 936–941

    Google Scholar 

  • Liu J, Zhu J-K (1998) A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945

    Google Scholar 

  • Luit A van der, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121: 705–714

    Google Scholar 

  • Lynch DV (1990) Chilling injury in plants: the relevance of membrane lipids. In: Katterman F (ed) Environmental injury to plants. Academic Press, San Diego, pp 17–33

    Google Scholar 

  • Ma L, Xu X, Cui S, Sun D (1999) The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell 11: 1351–1363

    Google Scholar 

  • Mackay CD (1999) High-speed digital CCD cameras: principles and applications. In: Mason B (ed) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, pp 517–526

    Google Scholar 

  • MacRobbie EAC (1984) Effects of light/dark on anion fluxes in isolated guard cells ofCommelina communis L. J Exp Bot 35: 707–726

    Google Scholar 

  • — (1997) Signaling in guard cells and ion channel activity. J Exp Bot 48: 515–528

    Google Scholar 

  • Majima T, Oosawa F (1975) Response ofChlamydomonas to temperature change. J Protozool 22: 499–501

    Google Scholar 

  • Malhó R (1999) Coding information in plant cells: the multiple roles of Ca2+ as a second messenger. Plant Biol 1: 487–494

    Google Scholar 

  • —, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube organization. Plant Cell 8: 1935–1949

    Google Scholar 

  • —, Moutinho A, Luit A van der, Trewavas AJ (1998) Spatial characteristics of calcium signaling: the calcium wave as a basic unit in plant calcium signaling. Philos Trans R Soc Lond Ser B Biol Sci 353: 1463–1473

    Google Scholar 

  • —, Camacho L, Moutinho A (2000) Signaling pathways in pollen tube growth and reorientation. Ann Bot 85: 59–68

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • Mason B (ed) (1999) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego

    Google Scholar 

  • Mason WT, Dempster J, Hoyl J, McCann TJ, Somasundaram B, O'Brien W (1999) Quantitative digital imaging of biological activity in living cells with ion-selective fluorescent probes. In: Mason B (ed) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, pp 196–209

    Google Scholar 

  • Matz MV, Fradkov AF, Savitsky AP, Zaraisky AG, Merkelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescentAnthozoa species. Nat Biotechnol 17: 969–973

    Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signaling systems. Trends Plant Sci 3: 32–36

    Google Scholar 

  • Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes ofLilium longiflorum. J Cell Sci 110: 1269–1278

    Google Scholar 

  • —, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+, and Ca2+ lag growth pulses ofLilium longiflorum pollen tubes. J Cell Sci 112: 1497–1509

    Google Scholar 

  • Messiaen J, Read ND, Cutsem P van, Trewavas AJ (1993) Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts. J Cell Sci 104: 365–371

    Google Scholar 

  • Miesenböck G, Angelis DA de, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent protein. Nature 394: 192–195

    Google Scholar 

  • Miller AJ, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326: 397–400

    Google Scholar 

  • Minchin PEH, Thorpe MR (1983) A rate of cooling response in phloem translocation. J Exp Bot 34: 529–536

    Google Scholar 

  • Minorsky PV (1989) Temperature sensing by plants: a review and hypothesis. Plant Cell Environ 12: 119–135

    Google Scholar 

  • —, Spanswick RM (1989) Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ 12: 137–143

    Google Scholar 

  • Mithöfer A, Ebel J, Bhagwat AA, Boiler T, Neuhaus-Url G (1999) Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Planta 207: 566–574

    Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for calcium based on green fluorescent protein and calmodulin. Nature 388: 882–887

    Google Scholar 

  • —, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96: 2135–2140

    Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and S6 ribosomal protein kinase by touch, cold and water stress inArabidopsis thaliana. Proc Natl Acad Sci USA 93: 765–769

    Google Scholar 

  • Moyen C, Hammond-Kosack KE, Jones J, Knight MR, Johannes E (1998) Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant Cell Environ 21: 1101–1111

    Google Scholar 

  • Mühling KH, Wimer M, Goldbach HE (1998) Apoplastic and membrane-associated Ca2+ in leaves and roots as affected by boron deficiency. Physiol Plant 102: 179–184

    Google Scholar 

  • Muir SR, Bewell MA, Sanders D, Allen GJ (1997) Ligand-gated Ca2+ channels and Ca2+ signaling in higher plants. J Exp Bot 48: 589–597

    Google Scholar 

  • Müller J, Staehelin C, Xie Z-P, Neuhaus-Url G, Boller T (2000) NOD factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells. Plant Physiol 124: 733–740

    Google Scholar 

  • Muto S, Izawa S, Miyachi S (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett 139: 250–254

    Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19: 137–141

    Google Scholar 

  • Nakajima-Shimada J, Iida H, Tsuji FI, Anraku Y (1991) Monitoring of intracellular calcium inSaccharomyces cerevisiae with an apoaequorin cDNA expression system. Proc Natl Acad Sci USA 88: 6878–6882

    Google Scholar 

  • Nebl T, Fisher PR (1997) Intracellular calcium signals inDictyostelium chemotaxis are mediated exclusively by Ca2+ influx. J Cell Sci 110: 2845–2853

    Google Scholar 

  • Niggli E (1999) Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol 61: 311–335

    Google Scholar 

  • Obendorf RL, Dickerman AM, Pflum TM, Kacalanos MA, Smith ME (1998) Drying rate alters soluble carbohydrates dessication tolerance and subsequent seedling growth of soybean (Glycine max L Merrill) zygotic embryos during in vitro maturation. Plant Sci 132: 1–12

    Google Scholar 

  • Oparka KJ, Roberts AG, Santa Cruz S, Boevink P, Prior DAM, Smallcombe A (1997) Using GFP to study virus invasion and spread in plant tissues. Nature 388: 401–402

    Google Scholar 

  • Pauly N, Knight MR, Thuleau P, Luit A van der, Moreau M, Trewavas AJ, Ranjeva R, Mazars C (2000) Control of free calcium in plant cell nuclei. Nature 405: 754–755

    Google Scholar 

  • Pei Z-M, Baizabal-Aguirre VM, Allen GJ, Schroeder JI (1998) A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ inArabidopsis thaliana guard cells. Proc Natl Acad Sci USA 95: 6548–6553

    Google Scholar 

  • Persechini A, Lynch JA, Romoser VA (1997) Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. Cell Calcium 22: 209–216

    Google Scholar 

  • Piñeros M, Tester M (1997) Calcium channels in higher plant cells: selectivity regulation and pharmacology. J Exp Bot 48: 551–577

    Google Scholar 

  • Plieth C (1999) Temperature sensing by plants: calcium-permeable channels as primary sensors — a model. J Membr Biol 172: 121–127

    Google Scholar 

  • —, Hansen U-P (1996) Methodological aspects of pressure loading of Fura-2 into Characean cells. J Exp Bot 47: 1601–1612

    Google Scholar 

  • — — (1998) Cytoplasmic Ca2+ and H+ buffers in green algae: a reply. Protoplasma 203: 210–213

    Google Scholar 

  • —, Sattelmacher B, Hansen U-P (1997) Cytoplasmic Ca2+-H+-exchange buffers in green algae. Protoplasma 198: 107–124 (author's correction, 199: 223)

    Google Scholar 

  • — — — (1998a) Light-induced cytosolic calcium transients in green plants I: methodological aspects of chlorotetracycline usage in algae and higher-plant cells. Planta 207: 42–51

    Google Scholar 

  • — — — (1998b) Light-induced cytosolic calcium transients in green plant cells II: the effect on the K+-channel as studied by kinetic analysis inChara corallina. Planta 207: 52–59

    Google Scholar 

  • — — —, Thiel G (1998c) The action potential inChara: Ca2+ release from internal stores visualized by Mn2+-induced quenching of fura-dextran. Plant J 13: 167–175

    Google Scholar 

  • — — —, Knight MR (1999a) Low pH-mediated elevations in cytosolic calcium are inhibited by aluminium: a potential mechanism for aluminium toxicity. Plant J 18: 643–650

    Google Scholar 

  • —, Hansen U-P, Knight H, Knight MR (1999b) Temperature sensing by plants: the primary mechanisms of signal perception and calcium response. Plant J 18: 491–497

    Google Scholar 

  • —, Sattelmacher B, Knight MR (2000) Ammonium uptake and cellular alkalisation in roots ofArabidopsis thaliana: the involvement of cytoplasmic calcium. Physiol Plant 110: 518–523

    Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111: 1271–1279

    Google Scholar 

  • Prasher D, McCann RO, Cormier MJ (1985) Cloning and expression of the cDNA coding for aequorin, a bioluminescent calciumbinding protein. Biochem Biophys Res Commun 126: 1259–1268

    Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6: 1301–1310

    Google Scholar 

  • Pu R, Robinson KR (1998) Cytoplasmic calcium gradients and calmodulin in early development of the fucoid algaPelvetia compressa. J Cell Sci 111: 3197–3207

    Google Scholar 

  • Putney JW Jr, Pedrosa Ribeiro CM (2000) Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol Life Sci 57: 1272–1286

    Google Scholar 

  • Ratcliffe RG (1997) In vivo NMR studies of the metabolic response of plant tissues to anoxia. Ann Bot 79 (Suppl A): 39–48

    Google Scholar 

  • Redhead CR, Palme K (1996) The genes of plant signal transduction. Crit Rev Plant Sci 15: 425–454

    Google Scholar 

  • Roberts S, Brownlee C (1995) Calcium influx fertilization potential and egg activation inFucus serratus. Zygote 3: 191–197

    Google Scholar 

  • Robinson KR (1990) Temporal and spatial changes in Ca2+ during plant development. In: Leonard RT, Hepler PK (eds) Calcium in plant growth and development. American Society of Plant Physiologists, Rockville, Md, pp 111–119 (Current topics in plant physiology, vol 4)

    Google Scholar 

  • —, McCaig (1980) Electrical fields calcium gradients and cell growth. Ann N Y Acad Sci 339: 132–138

    Google Scholar 

  • Roos W (2000) Ion mapping in plant cells: methods and applications in signal transduction research. Planta 210: 347–370

    Google Scholar 

  • Russ JC (1999) The image processing handbook, 3rd edn. CRC Press, London

    Google Scholar 

  • Russell AJ, Knight MR, Cove DJ, Knight CD, Trewavas AJ, Wang TL (1996) The mossPhyscomitrella patens transformed with apoaequorin cDNA responds to cold shock, mechanical perturbation and pH with transient increases in cytoplasmic calcium. Transgenic Res 5: 167–170

    Google Scholar 

  • Russell AJ, Cove DJ, Trewavas AJ, Wang TL (1998) Blue light but not red light induces a calcium transient in the mossPhyscomitrella patens (Hedw) B S & G. Planta 206: 278–283

    Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11: 691–706

    Google Scholar 

  • Sankaranarayanan S, Angelis D de, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79: 2199–2208

    Google Scholar 

  • Sawano A, Miyawaki A (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acid Res 28: i-vii

    Google Scholar 

  • Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH (1996) Transgenic Aequorin reveals organ-specific cytosolic Ca2+ responses to anoxia inArabidopsis thaliana seedlings. Plant Physiol 111: 243–257

    Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 1900–1902

    Google Scholar 

  • Shimomura O (1991) Preparation and handling of aequorin solutions for the measurement of cellular calcium. Cell Calcium 12: 635–643

    Google Scholar 

  • — (1995) Cause of spectral variation in the luminescence of semisynthetic aequorins. Biochem J 306: 537–543

    Google Scholar 

  • —, Musicki B, Kishi Y (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J 261: 309–312

    Google Scholar 

  • — — —, Inouye S (1993) Light-emitting properties of recombinant semisynthetic aequorin and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14: 373–378

    Google Scholar 

  • Siedow JN, Umbach AL (1995) Plant mitochondrial electron transfer and molecular biology. Plant Cell 7: 821–831

    Google Scholar 

  • Sinclair B (2001) Glow powers: Stratagene's vitality hrGFP vectors enhance fluorescence. Scientist 15 (5): 23

    Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3: 299–304

    Google Scholar 

  • Stanley PE (1992) A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence including instruments for manual automatic and specialized operation for HPLC LCm GLC and microtiter plates, part 1: descriptions. J Biolumin Chemilumin 7: 77–108

    Google Scholar 

  • — (1999) Commercially available fluorometers, luminometers and imaging devices for low-light level measurements and allied kits and reagents: survey update 6. Luminescence 14: 201–213

    Google Scholar 

  • Staxen I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96: 1779–1784

    Google Scholar 

  • Stricker SA, Whittacker M (1999) Confocal laser scanning microscopy of calcium in living cells. Microsc Res Tech 46: 356–369

    Google Scholar 

  • Stucki J, Somogyi R (1994) A dialogue on Ca2+ oscillations: an attempt to understand the essentials of mechanisms leading to hormone-induced intracellular Ca2+ oscillations in various kinds of cell on a theoretical level. Biochim Biophys Acta 1183: 453–472

    Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1994) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspensioncultured cells. Plant Cell 6: 1747–1762

    Google Scholar 

  • Sullivan KF, Kay SA (eds) (1999) Green fluorescent proteins. Academic Press, San Diego (Methods in cell biology, vol 58)

    Google Scholar 

  • Tähtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M (1997) The induction of kin genes in cold-acclimatingArabidopsis thaliana: evidence of a role for calcium. Planta 203: 442–447

    Google Scholar 

  • Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79: 1089–1125

    Google Scholar 

  • Takahashi K, Isobe M, Knight MR, Trewavas AJ, Muto S (1997) Hypoosmotic shock induces increase in cytosolic Ca2+ in tobacco suspension-culture cells. Plant Physiol 113: 587–594

    Google Scholar 

  • Tang J, Wu S, Bai J, Sun D-Y (1996) Extracellular calmodulinbinding proteins in plants: purification of a 21-kDa calmodulinbinding protein. Planta 198: 510–516

    Google Scholar 

  • Tang Y, Othmer HG (1995) Frequency encoding in excitable systems with applications to calcium oscillations. Proc Natl Acad Sci USA 92: 7869–7873

    Google Scholar 

  • Terry BR, Findlay GP, Tyerman SD (1992) Direct effects of Ca2+-channel blockers on plasma membrane cation channels ofAmaranthus tricolor protoplasts. J Exp Bot 43: 1457–1473

    Google Scholar 

  • Thomas P, Delaville F (1991) The use of fluorescent indicators for measurements of cytosolic free calcium concentrations in cell populations and single cells. In: McCormack JG, Cobbold PH (eds) Cellular calcium: a practical approach. Oxford University Press, Oxford, pp 1–54

    Google Scholar 

  • Tlalka M, Fricker M (1999) The role of calcium in blue-light-dependent chloroplast movement inLemna trisulca L. Plant J 20: 461–473

    Google Scholar 

  • Tomkins P, Lyons A (1999) Properties of low-light-level intensified cameras. In: Mason B (ed) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, pp 491–506

    Google Scholar 

  • Torrecilla I, Leganes F, Bonilla I, Fernandes-Pinas F (2000) Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria. Plant Physiol 123: 161–176

    Google Scholar 

  • Trewavas AJ (1999a) Le calcium c'est la vie: calcium makes waves. Plant Physiol 120: 1–6

    Google Scholar 

  • — (1999b) How plants learn: commentary. Proc Natl Acad Sci USA 96: 4216–4218

    Google Scholar 

  • —, Malhó R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9: 1181–1195

    Google Scholar 

  • — — (1998) Ca2+ signaling in plant cells: the big network! Curr Opin Plant Biol 1: 428–433

    Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67: 509–544

    Google Scholar 

  • —, Miyawaki A (1998) Seeing the machinery of life cells. Science 280: 1954–1955

    Google Scholar 

  • — — (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327: 472–500

    Google Scholar 

  • Vanselow KH, Kolbowski J, Hansen U-P (1989) Analysis of chlorophyll fluorencence by means of noisy light. J Exp Bot 40: 247–256

    Google Scholar 

  • Verdus M-C, Thellier M, Ripoll Camille (1997) Storage of environmental signals in flax: their morphogenetic effect as enabled by transient depletion of calcium. Plant J 12: 1399–1410

    Google Scholar 

  • Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284: 92–96

    Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465: 171–189

    Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in algaChara. Nature 296: 647–651

    Google Scholar 

  • Wood NT, Allan AC, Haley A, Viry-Moussaid M, Trewavas AJ (2000) The characterization of differential calcium signaling in tobacco guard cells. Plant J 24: 335–344

    Google Scholar 

  • Woods NM, Cuthbertson KSR, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319: 600–602

    Google Scholar 

  • Yamamoto YY, Matsui M, Deng X-W (1998) Positive feed-back in plant signaling pathways. Trends Plant Sci 3: 374–375

    Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49: 697–725

    Google Scholar 

  • Zik M, Arazi T, Snedden WA, Fromm H (1998) Two isoforms of glutamate decarboxylase inArabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Mol Biol 37: 967–975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Plieth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plieth, C. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 218, 1–23 (2001). https://doi.org/10.1007/BF01288356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01288356

Keywords

Navigation