Skip to main content
Log in

GATA Factors in Gastrointestinal Malignancy

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

GATA factors are unique transcription factors with conserved DNA-binding domains. They serve diverse roles in embryogenesis, cell differentiation, regulation of tissue-specific genes, and carcinogenesis. The subfamily GATA-4, -5, and -6 are highly expressed in endoderm-derived organs and regulate multiple gut-specific genes. Multiple studies have analyzed the role of GATA factors in gastrointestinal (GI) malignancy, such as those of the stomach, pancreas, and colon, and premalignant lesions such as Barrett’s esophagus. The GATA factors appear to have distinct roles in regulating key genes involved in GI malignancy. Understanding the precise role of GATA factors in malignancy may lead to the development of effective molecular targets for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko LJ, Engel JD (1993) DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 13:4011–4022

    PubMed  CAS  Google Scholar 

  2. Merika M, Orkin SH (1993) DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 7:3999–4010

    Google Scholar 

  3. Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80:575–581

    PubMed  CAS  Google Scholar 

  4. Simon MC (1995) Gotta have GATA. Nat Genet 11:9–11

    PubMed  CAS  Google Scholar 

  5. Weiss MJ, Orkin SH (1995) GATA transcription factor: key regulators of hematopoiesis. Exp Hematol 23:99–107

    PubMed  CAS  Google Scholar 

  6. Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378

    PubMed  CAS  Google Scholar 

  7. Evans T, Reitman M, Felsenfeld G (1988) An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci USA 85:5976–5980

    PubMed  CAS  Google Scholar 

  8. Knezetic JA, Felsenfeld G (1989) Identification and characterization of a chicken alpha-globin enhancer. Mol Cell Biol 9:893–901

    PubMed  CAS  Google Scholar 

  9. DeBoer E, Antoniou M, Mignotte V et al (1988) The human beta-globin promoter; nuclear protein factors and erythroid specific induction of transcription. EMBO J 7:4203–4212

    PubMed  CAS  Google Scholar 

  10. Gumucio DL, Rood KL, Gay TA et al (1988) Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin. Mol Cell Biol 8:5310–5322

    PubMed  CAS  Google Scholar 

  11. Tsai SH, Martin D, Zon LI et al (1989) Cloning of cDNA for the major DNA-binding protein of erythroid lineage through expression in mammalian cells. Nature 339:446–451

    PubMed  CAS  Google Scholar 

  12. Evans T, Felsenfeld G (1989) The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58:877–885

    PubMed  CAS  Google Scholar 

  13. Evans T, Felsenfeld G, Reitman M (1990) Control of globin gene transcription. Annu Rev Cell Biol 6:95–124

    PubMed  CAS  Google Scholar 

  14. Orkin SH (1990) Globin gene regulation and switching: circa 1990. Cell 63:665–672

    PubMed  CAS  Google Scholar 

  15. Yamamoto M, Ko LJ, Leonard MW et al (1990) Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Gene Dev 4:1650–1662

    PubMed  CAS  Google Scholar 

  16. Zon L, Mather C, Burgess S et al (1991) Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci USA 88:10642–10646

    PubMed  CAS  Google Scholar 

  17. Martin D, Zon L, Mutter G et al (1990) Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344:444–447

    PubMed  CAS  Google Scholar 

  18. Romeo PH, Prandini MH, Joulin V et al (1990) Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344:447–449

    PubMed  CAS  Google Scholar 

  19. Ito E, Toki T, Ishihara H et al (1993) Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 362:466–468

    PubMed  CAS  Google Scholar 

  20. Pevny L, Simon C, Robertson E et al (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257–260

    PubMed  CAS  Google Scholar 

  21. Simon C, Pevny L, Wiles M et al (1992) Rescue of erythroid development in gene targeted GATA-1 mouse embryonic stem cells. Nat Genet 1:92–98

    PubMed  CAS  Google Scholar 

  22. Dorfman DM, Wilson D, Bruns G et al (1992) Human transcription fator GATA-2. J Biol Chem 267:1279–1285

    PubMed  CAS  Google Scholar 

  23. Mouthon MA, Bernard O, Mitjavila MT et al (1993) Expression of Tal-1 and GATA-binding proteins during human hematopoeisis. Blood 81:647–655

    PubMed  CAS  Google Scholar 

  24. Zon LI, Gurish MF, Stevens RL et al (1991) GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase-A gene. J Biol Chem 266:22948–22963

    PubMed  CAS  Google Scholar 

  25. Tsai FY, Keller G, Kuo F et al (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226

    PubMed  CAS  Google Scholar 

  26. Ko LJ, Yamamoto M, Leonard MW et al (1991) Murine and human T-lymphocyte GATA-3 factors mediate transcription through cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11:2778–2784

    PubMed  CAS  Google Scholar 

  27. Labastie MC, Catala M, Gregoire JM et al (1995) The GATA-3 gene is expressed during human kidney embryogenesis. Kidney Int 47:1597–1603

    PubMed  CAS  Google Scholar 

  28. Pandolfi P, Roth M, Karis A et al (1995) Targeted disruption of GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11:40–44

    PubMed  CAS  Google Scholar 

  29. Laverriere A, MacNeill C, Mueller C et al (1994) GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269:23177–23184

    PubMed  CAS  Google Scholar 

  30. Arceci R, King A, Simon C et al (1993) Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 13:2235–2246

    PubMed  CAS  Google Scholar 

  31. Morrissey E, Ip H, Tang Z et al (1997) GATA-4 activates transcription via two novel domains that are conserved within the GTA 4/5/6 subfamily. J Biol Chem 272:8515–8524

    Google Scholar 

  32. Kelley C, Blumberg H, Zon LI et al (1993) GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118:817–827

    PubMed  CAS  Google Scholar 

  33. Kiiveri S, Siltanen S, Rahman N et al (1999) Reciprocal changes in the expression of transcription factors GATA-4 and GATA-6 accompany adrenocortical tumorigenesis in mice and humans. Mol Med 5:490–501

    PubMed  CAS  Google Scholar 

  34. Molkentin JD, Lin Q, Duncan SA et al (1997) Requirement of the transcription factor GATA 4 for the heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072

    PubMed  CAS  Google Scholar 

  35. Kuo CT, Morrissey EE, Anandappa R et al (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060

    PubMed  CAS  Google Scholar 

  36. Heikinheimo M, Ermolaeva M, Bielinska M et al (1997) Expression and hormonal regulation of transcription factors GATA 4 and GATA 6 in the mouse ovary. Endocrinology 138:3505–3514

    PubMed  CAS  Google Scholar 

  37. Ketola I, Rahman N, Toppari J et al (1999) Expression and regulation of transcription factors GATA 4 and GATA 6 in developing mouse testis. Endocrinology 140:1470–1480

    PubMed  CAS  Google Scholar 

  38. Morrisey E, Ip H, Tang Z et al (1997) GATA 5: a transcriptional activator expressed in a novel temporally and spatially restricted pattern during embryonic development. Dev Biol 183:21–36

    PubMed  CAS  Google Scholar 

  39. Nemer G, Qureshi ST, Malo D et al (1999) Functional analysis and chromosomal mapping of GATA5, a gene encoding a zinc finger DNA-binding protein. Genome 10:993–999

    CAS  Google Scholar 

  40. Molkentin J, Tymitz K, Richardson J et al (2000) Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol 20:5256–5260

    PubMed  CAS  Google Scholar 

  41. Bruno M, Korfhagen T, Cong L et al (2000) GATA 6 activates transcription of surfactant protein A. J Biol Chem 275:1043–1049

    PubMed  CAS  Google Scholar 

  42. Morrisey E, Hon S, Ip M et al (1996) GATA 6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 177:309–322

    PubMed  CAS  Google Scholar 

  43. Morrisey E, Tang Z, Sigrist K et al (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12:3579–3590

    PubMed  CAS  Google Scholar 

  44. Koutsourakis M, Langeveld A, Patient R et al (1999) The transcription factor GATA6 is essential for early extraembryonic development. Development 126:723–732

    CAS  Google Scholar 

  45. Gao X, Sedgwick T, Shi Y et al (1998) Distinct functions are implicated for the GATA-4,-5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18:2901–2911

    PubMed  CAS  Google Scholar 

  46. Belaguli N, Mao Z, Rigi M et al (2007) Cooperation between GATA4 and TGFβ signaling regulates intestinal epithelial gene expression. Am J Physiol Gastrointest Liver Physiol 292:1520–1533

    Google Scholar 

  47. Fitzgerald K, Bazar L, Avigan M (1998) GATA 6 stimulates a cell line specific activation element in the human lactase promoter. Am J Physiol Gastrointest Liver Physiol 274:314–324

    Google Scholar 

  48. Fang R, Olds L, Santiago N et al (2001) GATA family transcription factors activate lactase gene promoter in intestinal Caco2 cells. Am J Physiol Gastrointest Liver Physiol 280:58–67

    Google Scholar 

  49. Haveri H, Westerholm-Ormio M, Lindfors K et al (2008) Transcription factors GATA4 and GATA 6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol 11:9

    Google Scholar 

  50. Divine J, Staloch L, Haveri H et al (2004) GATA-4, GATA-5, and GATA-6 activate the rat liver fatty acid binding protein in concert with HNF-1α. Am J Physiol Gastrointest Liver Physiol 287:1086–1099

    Google Scholar 

  51. Guo M, Akiyama Y, House M et al (2004) Hypermethylation of the GATA genes in lung cancer. Clin Cancer Res 10:7917–7924

    PubMed  CAS  Google Scholar 

  52. Lassus H, Laitinen MP, Anttonen M et al (2001) Comparison of serous and mucinous ovarian carcinomas: distinct pattern of allelic loss at distal 8p and expression of transcription factor GATA-4. Lab Invest 81:517–526

    PubMed  CAS  Google Scholar 

  53. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Genet 3:415–428

    CAS  Google Scholar 

  54. Akiyama Y, Watkins N, Suzuki H (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23:8429–8439

    PubMed  CAS  Google Scholar 

  55. Shureiqi I, Zuo X, Broaddus R et al (2007) The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. FASEB J 21:743–753

    PubMed  CAS  Google Scholar 

  56. Mueller J, Werner M, Stolte M (2004) Barrett’s esophagus: histopathologic definitions and diagnostic criteria. World J Surg 28:148–154

    PubMed  Google Scholar 

  57. Paul A, Trier J, Dalton M et al (1976) The histologic spectrum of Barrett’s esophagus. N Engl J Med 295:476–480

    Google Scholar 

  58. Warson C, Van De Bovenkamp J, Korteland-Van male A et al (2002) Barrett’s esophagus is characterized by expression of gastric-type mucins (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be induced by the intestinal-type mucin, MUC2. Hum Pathol 33:660–668

    PubMed  CAS  Google Scholar 

  59. Arul G, Moorghen M, Myerscough N et al (2000) Mucin gene expression in Barrett’s esophagus: an in situ hybridization and immunohistochemical study. Gut 47:753–761

    PubMed  CAS  Google Scholar 

  60. Ho S, Shekels L, Toribara N et al (1995) Mucin gene expression in normal, pre-neoplastic and neoplastic human gastric epithelium. Cancer Res 55:2681–2690

    PubMed  CAS  Google Scholar 

  61. Audie J, Janin A, Porchet N et al (1993) Expression of human mucin genes in respiratory, digestive and reproductive tracts ascertained by in-situ hybridization. J Histochem Cytochem 41:1479–1485

    PubMed  CAS  Google Scholar 

  62. Ho S, Roberton A, Shekels L et al (1995) Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology 109:735–747

    PubMed  CAS  Google Scholar 

  63. Gum J, Byrd J, Hicks J et al (1989) Molecular cloning of human intestinal mucin cDNAs, sequence analysis and evidence for genetic polymorphism. J Biol Chem 264:6490–6491

    Google Scholar 

  64. Guillem P, Billeret V, Buisine M et al (2000) Mucin gene expression and cell differentiation in human normal, premalignant and malignant esophagus. Int J Cancer 88:856–861

    PubMed  CAS  Google Scholar 

  65. Buisine M, Devisme T, Savidge T (1998) Mucin gene expression in human, embryonic and fetal intestine. Gut 43:519–524

    PubMed  CAS  Google Scholar 

  66. Van Seuningen I, Pigny P, Perrais N et al (2001) Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Front Biosci 6:1216–1234

    Google Scholar 

  67. Van Der Sluis M, Melsi M, Jonckheere N et al (2004) The murine MUC2 mucin gene is transcriptionally regulated by the zinc finger GATA-4 transcription factor in intestinal cells. Biochem Biophys Res Commun 325:952–960

    PubMed  Google Scholar 

  68. Thim L (1989) A new family of growth factor-like peptides: trefoil disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic polypeptide (PSP) and frog skin peptides (spasmolysins). FEBS Lett 250:85–90

    PubMed  CAS  Google Scholar 

  69. Masiakowski P, Breathnach R, Bloch J et al (1982) Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res 10:7895–7903

    PubMed  CAS  Google Scholar 

  70. Brown A, Jeltsch J, Roberts M et al (1984) Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci USA 81:6344–6348

    PubMed  CAS  Google Scholar 

  71. Jorgensen K, Thim L, Jacobsen H (1982) Pancreatic spasmolytic polypeptide (PSP): preparation and initial chemical characterization of a new polypeptide from porcine pancreas. Reg Peptides 3:207–219

    CAS  Google Scholar 

  72. Suemori S, Lynch-Devaney K, Podolsky D (1991) Identification and characterization of rat intestinal trefoil factor: tissue- and cell-specific member of the trefoil protein family. Proc Natl Acad Sci USA 88:11017–11021

    PubMed  CAS  Google Scholar 

  73. Williams G, Wright N (1997) Trefoil factor family domain peptides. Virchows Arch 431:299–304

    PubMed  CAS  Google Scholar 

  74. Modlin I, Poulon R (1997) Trefoil peptides: mitogens, motogens or mirages? J Clin Gastroenterol 25:94–100

    Google Scholar 

  75. Thim L (1997) Trefoil peptides: from structure to function. Cell Mol Life Sci 53:888–903

    PubMed  CAS  Google Scholar 

  76. Lefebvre O, Chenard M, Masson R et al (1996) Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 274:259–262

    PubMed  CAS  Google Scholar 

  77. Machado J, Carneiro F, Blin N et al (1996) Pattern of pS2 expression in premalignant and malignant lesions of gastric mucosa. Eur J Cancer Prev 5:169–179

    PubMed  CAS  Google Scholar 

  78. Luqmani Y, Bennett C, Peterson L et al (1984) Expression of the pS2 gene in normal, benign, and neoplastic human stomach. Int J Cancer 44:806–812

    Google Scholar 

  79. Henry J, Bennett M, Piggot N et al (1991) Expression of the pNR-2/pS2 protein in diverse human epithelial tumors. Br J Cancer 64:677–682

    PubMed  CAS  Google Scholar 

  80. Leung W, Jun Y, Francis K et al (2002) Expression of trefoil peptides (TFF1, TFF2 and TFF3) in gastric carcinomas, intestinal metaplasia and non-neoplastic gastric tissue. J Pathol 197:582–588

    PubMed  CAS  Google Scholar 

  81. Park W, Oh R, Park J et al (2000) Somatic mutations of the trefoil factor family 1 gene in gastric cancer. Gastroenterology 119:691–698

    PubMed  CAS  Google Scholar 

  82. Al-azzeh E, Fegert P, Blin N et al (2000) Transcription factor GATA-6 activates expression of gastroprotective trefoil genes TFF1 and TFF2. Biochim Biophys Acta 1490:324–332

    PubMed  CAS  Google Scholar 

  83. Yoshida T, Sato R, Mahmood S et al (1997) GATA 6 DNA binding protein expressed in human gastric adenocarcinoma MK N45 cells. FEBS Lett 414:333–337

    PubMed  CAS  Google Scholar 

  84. Bai Y, Akiyama Y, Nagasaki H et al (2000) Distinct expression of CDX2 and GATA4/5, development-related genes, in human gastric cancer cell lines. Mol Carcinog 28:184–188

    PubMed  CAS  Google Scholar 

  85. Decker K, Goldman D, Grasch C et al (2006) Gata 6 is an important regulator of mouse pancreas development. Dev Biol 298:415–429

    PubMed  CAS  Google Scholar 

  86. Ritz-Laser B, Mamin A, Brun I et al (2005) The zinc factor-containing transcription factor Gata-4 in expressed in the developing endocrine pancreas and activates glucagon gene expression. Mol Endocrinol 19:759–770

    PubMed  CAS  Google Scholar 

  87. Chiang M, Melton D (2003) Single-cell transcript analysis of pancreas development. Dev Cell 4:383–393

    PubMed  CAS  Google Scholar 

  88. Ketola I, Otonkoski T, Pulkkinen M et al (2004) Transcription factor GATA-6 is expressed in the endocrine and GATA 4 in the exocrine pancreas. Mol Cell Endocrinol 226:51–57

    PubMed  CAS  Google Scholar 

  89. Pellegata N, Sessa F, Renult B et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors. Cancer Res 54:1556–1560

    PubMed  CAS  Google Scholar 

  90. Efthimiou T, Crnogorac-Jurcevid N (2001) Pancreatic cancer genetics. Pancreatology 1:571–575

    PubMed  CAS  Google Scholar 

  91. Jones S, Zhang X, Parsons W et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    PubMed  CAS  Google Scholar 

  92. Kwei K, Bashyam M, Kao J et al (2008) Genomic profiling identifies GATA 6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet 4:e1000081

    PubMed  Google Scholar 

  93. Kamitani H, Kameda H, Kelavkar UP et al (2000) A GATA binding site in the regulation of 15-lipoxygenase-1 in human colorectal carcinoma cell line, Caco-2. FEBS Lett 467:341–347

    PubMed  CAS  Google Scholar 

  94. Kritzik M, Ziober A, Dicharry S et al (1997) Characterization and sequence of an additional 15-lipoxygenase transcript and of the human gene. Biochim Biophys Acta 1352:267–281

    PubMed  CAS  Google Scholar 

  95. Kelavkar U, Wang S, Montero A et al (1998) Human 15-lipoxygenase gene promoter: analysis and identification of DNA binding sites for IL-3 induced regulatory factors in monocytes. Mol Biol 25:173–182

    CAS  Google Scholar 

  96. Brash A, Boeglin W, Chang M (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA 94:6148–6152

    PubMed  CAS  Google Scholar 

  97. Kuhn H, Walther M, Kuban R (2002) Mammalian arachidonate 15-lipoxygenases: structure, function and biological implications. Prostaglandins Other Lipid Mediat 68:263–290

    PubMed  Google Scholar 

  98. Schewe T, Rapoprt S, Kuhn H (1986) Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. Adv Enzymol Relat Area Mol Biol 58:191–272

    CAS  Google Scholar 

  99. Gulliksson M, Brunnstrom A, Johannesson M et al (2007) Expression of 15-lipoxygenase type 1 in human mast cells. Biochim Biophys Acta 1771:1156–1165

    PubMed  CAS  Google Scholar 

  100. Ikawa H, Kamitani H, Calvo B et al (1999) Expression of 15-lipoxygenase-1 in human colorectal cancer. Cancer Res 59:360–366

    PubMed  CAS  Google Scholar 

  101. Daret D, Blin P, Larrue J (1989) Synthesis of hydroxyl fatty acids from linoleic acid by human blood platelets. Prostaglandins 38:203–214

    PubMed  CAS  Google Scholar 

  102. Pugh S, Thomas G (1994) Patients with adenomatous polyps and carcinomas have increased colonic mucosal prostaglandin E2. Gut 35:675–678

    PubMed  CAS  Google Scholar 

  103. Kamitani H, Geller M, Eling T (1998) Expression of 15-lipoxygenase by human colorectal carcinoma Caco-2 cells during apoptosis and cell differentiation. Biol Chem 273:21569–21577

    CAS  Google Scholar 

  104. Shureiqi I, Wojno K, Poore J et al (1999) Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis 20:1985–1995

    PubMed  CAS  Google Scholar 

  105. Heslin M, Hawkins A, Boedefeld W et al (2005) Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer. Ann Surg 241:941–946

    PubMed  Google Scholar 

  106. Nixon J, Kim K, Lamb P et al (2004) 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins Leukot Essent Fatty Acids 70:7–15

    PubMed  CAS  Google Scholar 

  107. Sigal E, Dicharry S, Highland E et al (1992) Cloning of human airway 15-lipoxygenase: identity to the reticulocyte enzyme and expression in epithelium. Am J Physiol 262:392–398

    Google Scholar 

  108. Shannon V, Crouch E, Takahashi Y et al (1991) Related expression of arachidonate 12- and 15-lipoxygenases in animal and human lung tissue. Am J Physiol 261:399–405

    Google Scholar 

  109. Dano K, Andreasen P, Grondahl-Hansen J et al (1985) Plasminogen activators, tissue degradation and cancer. Adv Cancer Res 44:139–266

    PubMed  CAS  Google Scholar 

  110. Andreasen P, Kjoller L, Cristensen L et al (1998) The urokinase-type plasminogen activator system in cancer metastais: a review. Int J Cancer 72:1–22

    Google Scholar 

  111. DeBruin P, Griffioen G, Verspagel H et al (1987) Plasminogen activators and tumor development in the human colon: activity levels in normal mucosa, adenomatous polyps, and adenocarcinomas. Cancer Res 47:4654–4657

    CAS  Google Scholar 

  112. Baker E, Leaper D (2003) The plasminogen activator and matrix metalloproteinase systems in colorectal cancer: relationship to tumor pathology. Eur J Cancer 39:981–988

    PubMed  CAS  Google Scholar 

  113. Skelly M, Duffy M, Mulcahy H et al (1997) Urokinase-type activator in colorectal cancer: relationship with clinicopathological features and patient outcome. Clin Cancer Res 3:1837–1840

    PubMed  CAS  Google Scholar 

  114. Herszenyi L, Plebani M, Carraro P et al (1999) The role of cysteine and serine proteases in colorectal carcinoma. Cancer 7:1135–1142

    Google Scholar 

  115. Duffy M (1996) Proteases as prognostic markers in cancer. Clin Cancer Res 2:613–618

    PubMed  CAS  Google Scholar 

  116. Duffy M, Reilly D, O’Sullivan C et al (1990) Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res 50:6827–6829

    PubMed  CAS  Google Scholar 

  117. Oka T, Ishida T, Nishino T et al (1991) Immunohistochemical evidence of urokinase-type plasminogen activator in primary and metastatic tumors of pulmonary adenocarcinoma. Cancer Res 51:3522–3525

    PubMed  CAS  Google Scholar 

  118. Nekarda H, Schmitt M, Ulm K et al (1994) Prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in completely resected gastric cancer. Cancer Res 54:2900–2907

    PubMed  CAS  Google Scholar 

  119. Mulcahy H, Duffy M, Gibbons D et al (1994) Urokinase-type plasminogen activator and outcome in Duke’s B colorectal cancer. Lancet 344:583–584

    PubMed  CAS  Google Scholar 

  120. Sokabe T, Yamamoto K, Ohura N et al (2004) Differential regulation of urokinase-type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 287:2027–2034

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayanbule, F., Belaguli, N.S. & Berger, D.H. GATA Factors in Gastrointestinal Malignancy. World J Surg 35, 1757–1765 (2011). https://doi.org/10.1007/s00268-010-0950-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-010-0950-1

Keywords

Navigation