Skip to main content

Targeting Transcriptional Factors in Gastrointestinal Cancers and Future Prospective

  • Chapter
  • First Online:
Role of Transcription Factors in Gastrointestinal Malignancies

Abstract

Transcription factors (TFs) are deregulated in the majority of human cancers and play a major role in tumor progression and metastasis. Targeting TFs could prove to be highly effective in the treatment of gastrointestinal (GI) malignancies, as highlighted by the clinical efficiency of target molecules aiming at the nuclear hormone receptors. In this chapter, we summarize the role of different TFs discussed in the previous chapters with a focus on the emerging chemical as well as phytochemical approaches to control their functions. The outstanding diversity and efficacy of TFs as the driving force of cell transformation demands a continued search of TFs as novel and therapeutic agents for anti-GI treatments.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  2. Chiba T, Marusawa H, Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143:550–563

    Article  CAS  PubMed  Google Scholar 

  3. E.E.S.N.W. Group, (2012) Gastrointestinal stromal tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol, 23 vii49-vii55

    Google Scholar 

  4. Lim L, Michael M, Mann GB, Leong T (2005) Adjuvant therapy in gastric cancer. J Clin Oncol 23:6220–6232

    Article  CAS  PubMed  Google Scholar 

  5. Li B, Huang C (2017) Regulation of EMT by STAT3 in gastrointestinal cancer. Int J Oncol 50:753–767

    Article  CAS  PubMed  Google Scholar 

  6. I. Verma, (2004) Nuclear factor (NF)-κB proteins: therapeutic targets. Ann Rheum Dis, 63 ii57-ii61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duque N, Gomez-Guerrero C, Egido J (1997) Interaction of IgA with Fc alpha receptors of human mesangial cells activates transcription factor nuclear factor-kappa B and induces expression and synthesis of monocyte chemoattractant protein-1, IL-8, and IFN-inducible protein 10. J Immunol 159:3474–3482

    PubMed  CAS  Google Scholar 

  9. He G, Karin M (2011) NF-κB and STAT3–key players in liver inflammation and cancer. Cell Res 21:159

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Investig 107:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wurtz NR, Pomerantz JL, Baltimore D, Dervan PB (2002) Inhibition of DNA binding by NF-κB with pyrrole-imidazole polyamides. Biochemistry 41:7604–7609

    Article  CAS  PubMed  Google Scholar 

  12. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676

    Article  CAS  PubMed  Google Scholar 

  13. Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Fundam Mol Mech Mutagen 480:243–268

    Article  Google Scholar 

  14. Tian F, Fan T, Zhang Y, Jiang Y, Zhang X (2012) Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim Biophys Sin 44:847–855

    Article  CAS  PubMed  Google Scholar 

  15. Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S (2010) The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 649:84–91

    Article  CAS  Google Scholar 

  16. Schindler C, Darnell J Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–652

    Article  CAS  PubMed  Google Scholar 

  17. Haura EB, Turkson J, Jove R (2005) Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Rev Clin Oncol 2:315

    Article  CAS  Google Scholar 

  18. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gartel AL, Kandel ES (2006) RNA interference in cancer. Biomol Eng 23:17–34

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Liu P, Zhang B, Wang A, Yang M (2010) Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet 197:46–53

    Article  CAS  PubMed  Google Scholar 

  21. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99

    Article  CAS  PubMed  Google Scholar 

  22. Shehzad A, Lee J, Lee YS (2013) Curcumin in various cancers. Biofactors 39:56–68

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269:226–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berra E, Roux D, Richard DE, Pouysségur J (2001) Hypoxia-inducible factor-1α (HIF-1α) escapes O 2-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep 2:615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, Michiels C (2003) Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J Biol Chem 278:31277–31285

    Article  CAS  PubMed  Google Scholar 

  26. Schmid T, Zhou J, Brüne B (2004) HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 8:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blancher C, Moore JW, Robertson N, Harris AL (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res 61:7349–7355

    CAS  PubMed  Google Scholar 

  28. Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han K-Q, He X-Q, Ma M-Y, Guo X-D, Zhang X-M, Chen J, Han H, Zhang W-W, Zhu Q-G, Zhao W-Z (2015) Targeted silencing of CXCL1 by siRNA inhibits tumor growth and apoptosis in hepatocellular carcinoma. Int J Oncol 47:2131–2140

    Article  CAS  PubMed  Google Scholar 

  30. Chen C, Yu Z (2009) siRNA targeting HIF-1α induces apoptosis of pancreatic cancer cells through NF-κB-independent and-dependent pathways under hypoxic conditions. Anticancer Res 29:1367–1372

    PubMed  CAS  Google Scholar 

  31. Zhou Y-D, Kim Y-P, Li X-C, Baerson SR, Agarwal AK, Hodges TW, Ferreira D, Nagle DG (2004) Hypoxia-inducible factor-1 activation by (−)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod 67:2063–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kataoka K, Noda M, Nishizawa M (1994) Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol 14:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loayza-puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M (2010) Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene 29:2638

    Article  CAS  PubMed  Google Scholar 

  34. Gee J, Robertson J, Gutteridge E, Ellis I, Pinder S, Rubini M, Nicholson R (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12:S99–S111

    Article  CAS  PubMed  Google Scholar 

  35. Balasubramanian S, Eckert RL (2007) Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J Biol Chem 282:6707–6715

    Article  CAS  PubMed  Google Scholar 

  36. Liang Z, Wu R, Xie W, Geng H, Zhao L, Xie C, Wu J, Geng S, Li X, Zhu M (2015) Curcumin suppresses MAPK pathways to reverse tobacco smoke-induced gastric epithelial–mesenchymal transition in mice. Phytother Res 29:1665–1671

    Article  CAS  PubMed  Google Scholar 

  37. Wang S-D, Chen B-C, Kao S-T, Liu C-J, Yeh C-C (2014) Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement Altern Med 14:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P. Zhou, The polycomb group complex PRC1 collaborates with cohesin to stabilize the synaptonemal complex and promote crossovers during Meiosis, Dartmouth College 2012

    Google Scholar 

  39. Meier K, Brehm A (2014) Chromatin regulation: how complex does it get? Epigenetics 9:1485–1495

    Article  PubMed  PubMed Central  Google Scholar 

  40. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Metz R, Bannister AJ, Sutherland JA, Hagemeier C, O’Rourke EC, Cook A, Bravo R, Kouzarides T (1994) c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein. Mol Cell Biol 14:6021–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong S, Ma X, Wang Z, Han B, Zou H, Wu Z, Zang Y, Zhuang L (2017) YY1 promotes HDAC1 expression and decreases sensitivity of hepatocellular carcinoma cells to HDAC inhibitor. Oncotarget 8:40583

    PubMed  PubMed Central  Google Scholar 

  43. Kang W, Tong JH, Chan AW, Zhao J, Dong Y, Wang S, Yang W, Sin FM, Ng SS, Yu J (2014) Yin Yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med 12:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang Y, Goldstein BG, Chao H-H, Katz J (2005) KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther 4:1216–1221

    Article  CAS  PubMed  Google Scholar 

  45. Wei D, Kanai M, Huang S, Xie K (2005) Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27:23–31

    Article  CAS  PubMed  Google Scholar 

  46. Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11

    Article  CAS  PubMed  Google Scholar 

  47. Hashimoto I, Nagata T, Sekine S, Moriyama M, Shibuya K, Hojo S, Matsui K, Yoshioka I, Okumura T, Hori T (2017) Prognostic significance of KLF4 expression in gastric cancer. Oncol Lett 13:819–826

    Article  CAS  PubMed  Google Scholar 

  48. Lin RJ, Xiao DW, Liao LD, Chen T, Xie ZF, Huang WZ, Wang WS, Jiang TF, Wu BL, Li EM (2012) MiR-142-3p as a potential prognostic biomarker for esophageal squamous cell carcinoma. J Surg Oncol 105:175–182

    Article  CAS  PubMed  Google Scholar 

  49. Ji J, Wang H-S, Gao Y-Y, Sang L-M, Zhang L (2014) Synergistic anti-tumor effect of KLF4 and curcumin in human gastric carcinoma cell line. Asian Pac J Cancer Prev 15:7747–7752

    Article  PubMed  Google Scholar 

  50. Leung KW, Pon YL, Wong RN, Wong AS (2006) Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and β-catenin/T-cell factor-dependent pathway in human endothelial cells. J Biol Chem 281:36280–36288

    Article  CAS  PubMed  Google Scholar 

  51. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  52. Easwaran V, Pishvaian M, Byers S (1999) Cross-regulation of β-catenin–LEF/TCF and retinoid signaling pathways. Curr Biol 9:1415–1419

    Article  CAS  PubMed  Google Scholar 

  53. Dihlmann S, Kloor M, Fallsehr C, von Knebel Doeberitz M (2005) Regulation of AKT1 expression by beta-catenin/Tcf/Lef signaling in colorectal cancer cells. Carcinogenesis 26:1503–1512

    Article  CAS  PubMed  Google Scholar 

  54. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262

    Article  CAS  PubMed  Google Scholar 

  55. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409

    Article  CAS  PubMed  Google Scholar 

  56. Stevaux O, Dyson NJ (2002) A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 14:684–691

    Article  CAS  PubMed  Google Scholar 

  57. Wyllie AH (2002) E2F1 selects tumour cells for both life and death. J Pathol 198:139–141

    Article  CAS  PubMed  Google Scholar 

  58. Xu G, Livingston DM, Krek W (1995) Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci 92:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E (1999) Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 81:535–538

    Article  CAS  PubMed  Google Scholar 

  60. Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365:349

    Article  CAS  PubMed  Google Scholar 

  61. Atienza C, Elliott MJ, Dong Y, Yang H, Stilwell A, Liu T, McMASTERS KM (2000) Adenovirus-mediated E2F-1 gene transfer induces an apoptotic response in human gastric carcinoma cells that is enhanced by cyclin dependent kinase inhibitors. Int J Mol Med 6:55–118

    Article  CAS  PubMed  Google Scholar 

  62. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ (1996) Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85:537–548

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganji Purnachandra Nagaraju or Subasini Pattnaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagaraju, G.P., Bramhachari, P.V., Pattnaik, S. (2017). Targeting Transcriptional Factors in Gastrointestinal Cancers and Future Prospective. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_38

Download citation

Publish with us

Policies and ethics